過(guò)軸上動(dòng)點(diǎn)引拋物線的兩條切線、,為切點(diǎn).
(1)若切線,的斜率分別為,求證: 為定值,并求出定值;
(2)求證:直線恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo); 
(3)當(dāng)最小時(shí),求的值.
(1)-4;(2)見(jiàn)解析;(3).
本試題主要考查了拋物線的性質(zhì)和直線與拋物線的位置關(guān)系的運(yùn)用,導(dǎo)數(shù)的幾何意義的綜合問(wèn)題。
(1),,
,即,
同理,所以。聯(lián)立PQ的直線方程和拋物線方程可得:
,所以,所以
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212440975769.png" style="vertical-align:middle;" />,所以直線PQ恒過(guò)定點(diǎn)
(3),所以,設(shè),所以,當(dāng)且僅當(dāng)取等號(hào),即。
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212440835564.png" style="vertical-align:middle;" />
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232124413182065.png" style="vertical-align:middle;" />
所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,以AB為直徑的圓有一內(nèi)接梯形,且.若雙曲線以A、B為焦點(diǎn),且過(guò)C、D兩點(diǎn),則當(dāng)梯形的周長(zhǎng)最大時(shí),雙曲線的離心率為(      ).

A、        B、     C、2       D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)若直線的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

與拋物線有且僅有一個(gè)公共點(diǎn),并且過(guò)點(diǎn)的直線方程為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線C1(a>0),拋物線C2的頂點(diǎn)在原點(diǎn)O,C2的焦點(diǎn)是C1的左焦點(diǎn)F1。
(1)求證:C1,C2總有兩個(gè)不同的交點(diǎn);
(2)問(wèn):是否存在過(guò)C2的焦點(diǎn)F1的弦AB,使ΔAOB的面積有最大值或最小值?若存在,求直線AB的方程與SΔAOB的最值,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)A(0,1)、B(0,-1)、C(1,0),動(dòng)點(diǎn)P滿足·=k||2.
(1) 求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明方程表示的曲線.
(2) 當(dāng)k=2時(shí),求|2|的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線上的兩點(diǎn)A、B到焦點(diǎn)的距離和是5,則線段AB的中點(diǎn)到軸的距離為(   )
A.1             B.2            C.3             D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),且滿足那么點(diǎn)的軌跡方程為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的離心率為2,則的最小值為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案