求證:如果一條直線與兩個相交的平面都平行,那么這條直線與這兩個平面的交線平行.

已知:a∥α,a∥β,α∩β=b.

求證:a∥b.

思路點撥:已知線面平行,容易想到利用線面平行的性質,從而得到線線平行,而要利用線面平行的性質就要考慮添加輔助面.

證明:在平面α內任取一點P(Pb),平面β內取一點Q(Qb).設過點P和直線a的平面為α11∩α=c.過點Q和直線b的平面為β11∩β=d.

因為a∥α,所以a∥c.

又因為a∥β,所以a∥d.故c∥d.

又dβ,所以c∥β.

因為α∩β=b,所以c∥b.

又a∥c(已證),故a∥b.

[一通百通] 有關證明線線平行的問題,通?梢钥紤]先通過證明相關的線面平行,從而利用線面平行的性質定理而得到線線平行.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:設計必修二數(shù)學北師版 北師版 題型:047

求證:如果一條直線與一個平面平行,那么夾在這條直線和平面間的平行線段相等.

查看答案和解析>>

科目:高中數(shù)學 來源:湖北省荊州中學2008高考復習立體幾何基礎題題庫二(有詳細答案)人教版 人教版 題型:047

如果一條直線和兩個平面中的一個相交,那么它和另一個平面也相交.

已知:α∥β,l∩α=A.

求證:l與β相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果一條直線與兩個平等平面中的一個相交,那么它與另一個也相交.

如圖,已知,,求證相交.

 


查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果一條直線分別與兩個相交平面平行,那么這條直線與兩個相交平面的交線平行.

已知:(如圖)α∩β=a且b∥α,b∥β.求證:b∥a.

查看答案和解析>>

同步練習冊答案