在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差數(shù)列,a2,b2,a3+2成等比數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Sn+an>m對(duì)任意的正整數(shù)n恒成立,求常數(shù)m的取值范圍.

(Ⅰ)an=3n﹣2,bn=2•3n﹣1;(Ⅱ){m|m<3}

解析試題分析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q(q>0),由已知得,解得d=q=3,所以an=3n﹣2,bn=2•3n﹣1;(Ⅱ)由(Ⅰ)知,從而,則3n+3n﹣3>m對(duì)任意的正整數(shù)n恒成立,構(gòu)造函數(shù)f(n)=3n+3n﹣3,則
f(n+1)﹣f(n)=2•3n﹣3>0即f(n)單調(diào)遞增,所以m<f(1)=3,答案為{m|m<3}.
試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q(q>0).
由題意,得,解得d=q=3.
∴an=3n﹣2,bn=2•3n﹣1;
(Ⅱ)∵Sn+an>m對(duì)任意的正整數(shù)n恒成立,
∴3n+3n﹣3>m對(duì)任意的正整數(shù)n恒成立,
令f(n)=3n+3n﹣3,則f(n+1)﹣f(n)=2•3n﹣3>0,
∴f(n)單調(diào)遞增,
∴m<f(1)=3.
∴常數(shù)m的取值范圍{m|m<3}
考點(diǎn):1.等差數(shù)列和等比數(shù)列的通項(xiàng)公式;2.等比數(shù)列的求和公式;3.與正整數(shù)有關(guān)的不等式恒成立問題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=n2﹣n.
(1)求an;
(2)設(shè)數(shù)列{bn}滿足bn+1=2bn﹣an且b1=4,
(i)證明:數(shù)列{bn﹣2n}是等比數(shù)列,并求{bn}的通項(xiàng);
(ii)當(dāng)n≥2時(shí),比較bn﹣1•bn+1與bn2的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,,記數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù)、,且,使得、成等比數(shù)列?若存在,求出所有符合條件的、的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且滿足4Sn=(an+1)2.[來
(1)求{an}的通項(xiàng)公式;(2)設(shè)bn=,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是首項(xiàng)的遞增等差數(shù)列,為其前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,為數(shù)列的前n項(xiàng)和.若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知等差數(shù)列的前項(xiàng)和為,若,則的值為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)等差數(shù)列的前n項(xiàng)和為,若,,則當(dāng)取最小值時(shí),n等于          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)數(shù)列{an},{bn}都是等差數(shù)列.若a1+b1=7,a3+b3=21,則a5+b5=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知為等差數(shù)列,,,則____________

查看答案和解析>>

同步練習(xí)冊(cè)答案