【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
【答案】解:(Ⅰ) = = .
當(dāng) 時(shí),f(x)取得最大值2+1+a=3+a
又f(x)最高點(diǎn)的縱坐標(biāo)為2,
∴3+a=2,即a=﹣1.
又f(x)圖象上相鄰兩個(gè)最高點(diǎn)的距離為π,
∴f(x)的最小正周期為T=π
故 ,ω=1
(Ⅱ)由(Ⅰ)得
由 .
得 .
令k=0,得: .
故函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間為
【解析】根據(jù)兩角和的正弦公式和二倍角公式將f(x)化簡(jiǎn)為f(x)=Asin(ωx+φ)的形式,由正弦函數(shù)的圖象和性質(zhì)求出a和ω的值,找到f(x)的單調(diào)區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 若{an}和 都是等差數(shù)列,且公差相等.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,cn=bnbn+1 , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)樹(shù)形圖依據(jù)下列規(guī)律不斷生長(zhǎng):1個(gè)空心圓點(diǎn)到下一行僅生長(zhǎng)出1個(gè)實(shí)心圓點(diǎn),1個(gè)實(shí)心圓點(diǎn)到下一行生長(zhǎng)出1個(gè)實(shí)心圓點(diǎn)和1個(gè)空心圓點(diǎn).則第11行的實(shí)心圓點(diǎn)的個(gè)數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ex+m在x=1處有極值,求m的值及f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)y=3cosx的圖象,只需將函數(shù)y=3sin(2x﹣ )的圖象上所有點(diǎn)的( )
A.橫坐標(biāo)縮短到原來(lái)的 (縱坐標(biāo)不變),所得圖象再向左平移 個(gè)單位長(zhǎng)度
B.橫坐標(biāo)縮短到原來(lái)的 (縱坐標(biāo)不變),所得圖象再向右平移 個(gè)單位長(zhǎng)度
C.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象再向左平移 個(gè)單位長(zhǎng)度
D.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象再向右平移 個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式;
(3)設(shè)函數(shù) ,若對(duì)任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次;在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過(guò)3分即停止投籃,否則投第三次,某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2 , 該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
ξ | 0 | 2 | 3 | 4 | 5 |
p | 0.03 | 0.24 | 0.01 | 0.48 | 0.24 |
(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ;
(3)試比較該同學(xué)選擇都在B處投籃得分超過(guò)3分與選擇上述方式投籃得分超過(guò)3分的概率的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)都是正數(shù),2a5 , a4 , 4a6成等差數(shù)列,且滿足 ,數(shù)列{bn}的前n項(xiàng)和為 ,n∈N* , 且b1=1
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)設(shè) ,n∈N* , {Cn}前n項(xiàng)和為 ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,記拋物線y=x﹣x2與x軸所圍成的平面區(qū)域?yàn)镸,該拋物線與直線y=kx(k>0)所圍成的平面區(qū)域?yàn)镹,向區(qū)域M內(nèi)隨機(jī)拋擲一點(diǎn)P,若點(diǎn)P落在區(qū)域N內(nèi)的概率為 ,則k的值為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com