(備用題)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的點(diǎn)M(1,
3
2
)
到它的兩焦點(diǎn)F1、F2的距離之和為4,A、B分別是它的左頂點(diǎn)和上頂點(diǎn).
(I)求此橢圓的方程及離心率;
(II)平行于AB的直線l與橢圓相交于P、Q兩點(diǎn),求|PQ|的最大值及此時(shí)直線l的方程.
分析:(I)由橢圓上的點(diǎn)M到它的兩焦點(diǎn)F1、F2的距離之和為4,可得a的值,再將M(1,
3
2
)代入,即可確定橢圓方程及離心率;
(II)設(shè)l的方程與橢圓方程聯(lián)立,利用韋達(dá)定理確定|PQ|的表達(dá)式,從而可求|PQ|的最大值及此時(shí)直線l的方程.
解答:解:(I)由題意,∵橢圓上的點(diǎn)M到它的兩焦點(diǎn)F1、F2的距離之和為4,
∴2a=4,∴a=2
∴方程為
x2
4
+
y2
b2
=1

將M(1,
3
2
)代入得
1
4
+
(
3
2
)
2
b2
=1
,∴b2=3,∴c2=1
∴橢圓方程為:
x2
4
+
y2
3
=1
e=
c
a
=
1
2
;
(II)∵kAB=
3
2
,∴設(shè)l的方程為:y=
3
2
x+m

y=
3
2
x+m
x2
4
+
y2
3
=1
,∴3x2+2
3
mx+2m2-6=0

∴△=12(6-m2)>0,∴0≤m2<6
設(shè)
P(x1y1),Q(x2,y2)
,則x1+x2=-
2
3
m
3
,x1x2=
2m2-6
3

∴|PQ|=
1+k2
(x1+x2)2-4x1x2
=
1+
3
4
4m2
3
-4•
2m2-6
3
=
42-7m2
3

∵0≤m2<6,∴m2=0,即m=0時(shí),|PQ|max=
14
,此時(shí)l的方程為y=
3
2
x
點(diǎn)評(píng):本題考查橢圓的定義與標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查弦長公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省邵陽市洞口一中高二(上)8月月考數(shù)學(xué)試卷2(文科)(解析版) 題型:解答題

(備用題)如圖,已知橢圓到它的兩焦點(diǎn)F1、F2的距離之和為4,A、B分別是它的左頂點(diǎn)和上頂點(diǎn).
(I)求此橢圓的方程及離心率;
(II)平行于AB的直線l與橢圓相交于P、Q兩點(diǎn),求|PQ|的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省邵陽市洞口一中高二(上)8月月考數(shù)學(xué)試卷2(文科)(解析版) 題型:解答題

(備用題)如圖,已知橢圓到它的兩焦點(diǎn)F1、F2的距離之和為4,A、B分別是它的左頂點(diǎn)和上頂點(diǎn).
(I)求此橢圓的方程及離心率;
(II)平行于AB的直線l與橢圓相交于P、Q兩點(diǎn),求|PQ|的最大值及此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案