已知二次函數(shù)的圖像經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上。(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m.
解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,
則 f`(x)=2ax+b,由于f`(x)=6x-2,
得 a=3 , b=-2, 所以 f(x)=3x2-2x. ………3分
又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.
當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-=6n-5.
當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)得知 ==
故Tn===(1-).
因此,要使(1-)﹤()成立的m,必須且僅須滿足≤,
即m≥10,所以滿足要求的最小正整數(shù)m為10.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Tn是數(shù)列{bn}的前n項(xiàng)和,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)的圖像經(jīng)過坐標(biāo)原點(diǎn),且滿足,設(shè)函數(shù),其中為非零常數(shù)
(I)求函數(shù)的解析式;
(II)當(dāng) 時(shí),判斷函數(shù)的單調(diào)性并且說明理由;
(III)證明:對(duì)任意的正整數(shù),不等式恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)的圖像經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆廣西省桂林中學(xué)高三11月月考文科數(shù)學(xué)試卷 題型:解答題
已知二次函數(shù)的圖像經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上。(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西省高三11月月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)已知二次函數(shù)的圖像經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前n項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上。(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)m.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com