已知命題p:“方程x2+y2-x+y+m=0對(duì)應(yīng)的曲線是圓”,命題q:“雙曲線mx2-y2=1的兩條漸近線的夾角為60°”.若這兩個(gè)命題中只有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.
分析:本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假判定,解決的辦法是先判斷組成復(fù)合命題的簡(jiǎn)單命題的真假,再根據(jù)真值表進(jìn)行判斷.
解答:∵命題p:“方程x2+y2-x+y+m=0對(duì)應(yīng)的曲線是圓
∴若p真,由△=(-1)2+12-4m>0得:m<
1
2

又∵命題q:“雙曲線mx2-y2=1的兩條漸近線的夾角為60°
∴若q真,由于漸近線方程為y=±
m
x(m>0)

由題,
m
=
3
3
3
,得:m=3或
1
3

∵若這兩個(gè)命題中只有一個(gè)是真命題
∴p真q假時(shí),m∈(-∞,
1
3
)∪(
1
3
,
1
2
)
;
  p假q真時(shí),m=3.
綜上所述,所以實(shí)數(shù)m的取值范圍,m∈(-∞,
1
3
)∪(
1
3
,
1
2
)∪{3}
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是復(fù)合命題的真假判定,屬于基礎(chǔ)題目
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:方程x2+mx+1=0有兩個(gè)不相等的負(fù)實(shí)數(shù)根;命題Q:函數(shù)f(x)=lg[4x2+(m-2)x+1]的定義域?yàn)閷?shí)數(shù)集R,若P或Q為真,P且Q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:方程x2+(m-3)x+1=0無(wú)實(shí)根,命題Q:方程x2+
y2m-1
=1
是焦點(diǎn)在y軸上的橢圓.若¬P與P∧Q同時(shí)為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•和平區(qū)一模)已知命題p:關(guān)于x的函數(shù)f(x)=2x2+ax+3在[1,+∞)上是增函數(shù);命題q:關(guān)于x的方程x2-ax+4=0有實(shí)數(shù)根.若pVq為真命題,p∧q為假命題,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:方程
x2
2m
-
y2
m-2
=1
 表示焦點(diǎn)在x軸上的雙曲線.命題q:曲線y=x2+(2m-3)x+1與x軸交于不同的兩點(diǎn),若p∧q為假命題,p∨q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知命題p:方程(x-1)(x-2)=0的根是x=1;

命題q:方程(x-1)(x-2)=0的根是2,

則復(fù)合命題“p或q”是


  1. A.
    方程(x-1)(x-2)=0的根是x=1或方程(x-1)(x-2)=0的根是x=2
  2. B.
    方程(x-1)(x-2)=0的根是x=1或x=2
  3. C.
    方程(x-1)(x-2)=0的根或是x=1或是x=2
  4. D.
    以上均不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案