【題目】某校為了普及環(huán)保知識(shí),增強(qiáng)學(xué)生的環(huán)保意識(shí),在全校組織了一次有關(guān)環(huán)保知識(shí)的競(jìng)賽.經(jīng)過(guò)初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)3人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問(wèn)題,答對(duì)為本隊(duì)贏得10分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為 ,乙隊(duì)中3人答對(duì)的概率分別為 , , ,且各人回答正確與否相互之間沒(méi)有影響,用ξ表示乙隊(duì)的總得分. (Ⅰ)求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率.

【答案】解:由題意知,ξ的可能取值為0,10,20,30,

由于乙隊(duì)中3人答對(duì)的概率分別為 , ,

P(ξ=0)=(1﹣ )×(1﹣ )×(1﹣ )=

P(ξ=10)= ×(1﹣ )×(1﹣ )+(1﹣ )× ×(1﹣ )+(1﹣ )×(1﹣ )× = = ,

P(ξ=20)= × ×(1﹣ )+(1﹣ )× × + ×(1﹣ )× = =

P(ξ=30)= × × = ,

∴ξ的分布列為:

ξ

0

10

20

30

P

∴Eξ=0× +10× +20× +30× =

(Ⅱ)由A表示“甲隊(duì)得分等于30乙隊(duì)得分等于0”,B表示“甲隊(duì)得分等于20乙隊(duì)得分等于10”,可知A、B互斥.

又P(A)= = ,P(B)= × × =

則甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率為

P(A+B)=P(A)+P(B)= =


【解析】(Ⅰ)由題意知,ξ的可能取值為0,10,20,30,分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ;(Ⅱ)由A表示“甲隊(duì)得分等于30乙隊(duì)得分等于0”,B表示“甲隊(duì)得分等于20乙隊(duì)得分等于10”,可知A、B互斥.利用互斥事件的概率計(jì)算公式即可得出甲、乙兩隊(duì)總得分之和等于30分且甲隊(duì)獲勝的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象與軸交于點(diǎn),周期是

(1)求函數(shù)解析式,并寫(xiě)出函數(shù)圖象的對(duì)稱軸方程和對(duì)稱中心;

(2)已知點(diǎn),點(diǎn)是該函數(shù)圖象上一點(diǎn),點(diǎn)的中點(diǎn),當(dāng) , 時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若對(duì)任意的,總存在,使成立,求實(shí)數(shù)的取值范圍;

(3)若的值域?yàn)閰^(qū)間,是否存在常數(shù),使區(qū)間的長(zhǎng)度為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.(注:區(qū)間的長(zhǎng)度為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)寫(xiě)出曲線C的極坐標(biāo)方程;
(2)設(shè)點(diǎn)M的極坐標(biāo)為( ),過(guò)點(diǎn)M的直線l與曲線C相交于A,B兩點(diǎn),若|MA|=2|MB|,求AB的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx,且0<x1<x2 , 給出下列命題: ① <1
②x2f(x1)<x1f(x2
③當(dāng)lnx>﹣1時(shí),x1f(x1)+x2f(x2)>2x2f(x1
④x1+f(x1)<x2+f(x2
其中正確的命題序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合A={x|1<2x<8},B={x| +1<0},C={x|a<x<a+1}.
(1)求集合UA∩B;
(2)若B∪C=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是(
A.y=x3+x
B.y=﹣
C.y=sinx
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電腦游戲中,“主角的生存機(jī)會(huì)往往被預(yù)先設(shè)定,如某槍?xiě)?zhàn)游戲中,“主角被設(shè)定生存機(jī)會(huì)5,每次生存承受射擊8(被擊中8槍則失去一次生命機(jī)會(huì)).假設(shè)射擊過(guò)程均為單子彈發(fā)射,試為主角耗用生存機(jī)會(huì)的過(guò)程設(shè)計(jì)一個(gè)算法,并畫(huà)出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,過(guò)左焦點(diǎn)F且垂直于x軸的弦長(zhǎng)為1.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)P(m,0)為橢圓C的長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P且斜率為 的直線l交橢圓C于A,B兩點(diǎn),問(wèn):|PA|2+|PB|2是否為定值?若是,求出這個(gè)定值并證明,否則,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案