【題目】已知集合A={a1 , a2 , …,am}.若集合A1∪A2∪A3∪…∪An=A,則稱A1 , A2 , A3 , …,An為集合A的一種拆分,所有拆分的個數(shù)記為f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)關(guān)于n的表達式.
【答案】
(1)解:設(shè)A1∪A2={a1},共有3種,即f(2,1)=3;
設(shè)A1∪A2={a1,a2},若A1=,則有1種;若A1={a1},則有2種;
若A1={a2},則有2種;若A1={a1,a2},則有4種;即f(2,2)=9;
設(shè)A1∪A2∪A3={a1,a2},若A1=,則A2∪A3={a1,a2},所以有f(2,2)=9種;
若A1={a1},則A2∪A3={a1,a2}或A2∪A3={a2},
所以有f(2,2)+f(2,1)=12;若A1={a2},則有12種;
若A1={a1,a2},則A2∪A3={a1,a2}或A2∪A3={a1}或A2∪A3={a2}或A2∪A3=,
所以有1+3+3+9=16種;即f(3,2)=49
(2)解:猜想f(n,2)=(2n﹣1)2,n≥2,n∈N*,用數(shù)學歸納法證明.
當n=2時,f(2,2)=9,結(jié)論成立.
假設(shè)n=k時,結(jié)論成立,即f(k,2)=(2k﹣1)2,
當n=k+1時,A1∪A2∪…∪Ak+1={a1,a2}
當Ak+1=時,A1∪A2∪A3∪…∪Ak={a1,a2},所以有f(k,2)=(2k﹣1)2種;
當Ak+1={a1}時,A1∪A2∪…∪Ak={a1,a2},所以有f(k,2)=(2k﹣1)2種,
或A1∪A2∪A3∪…∪Ak={a2},所以有2k﹣1種,共有2k(2k﹣1)種;
同理當Ak+1={a2}時,共有2k(2k﹣1)種;
當Ak+1={a1,a2}時,A1∪A2∪A3∪…∪Ak={a1,a2},所以有f(k,2)=(2k﹣1)2種,
或A1∪A2∪A3∪…∪Ak={a1},所以有2k﹣1種,或A1∪A2∪…∪Ak={a2},
所以有2k﹣1種,或A1∪A2∪A3∪…∪Ak=,所以有1種,共有22k種;
則f(k+1,2)=4(2k﹣1)2+4(2k﹣1)+1=(2k+1﹣1)2,
所以,當n=k+1時,結(jié)論成立.
所以f(n,2)=(2n﹣1)2,n≥2,n∈N*
【解析】(1)設(shè)A1∪A2={a1},得f(2,1)=3; 設(shè)A1∪A2={a1 , a2},得f(2,2)=9;設(shè)A1∪A2∪A3={a1 , a2},由此利用分類討論思想能求出f(3,2).(2)猜想f(n,2)=(2n﹣1)2 , n≥2,n∈N* , 再利用數(shù)學歸納法進行證明.
【考點精析】解答此題的關(guān)鍵在于理解集合的并集運算的相關(guān)知識,掌握并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立.
科目:高中數(shù)學 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:
零件的個數(shù)(個) | 2 | 3 | 4 | 5 |
加工的時間(小時) | 2.5 | 3 | 4 | 4.5 |
(Ⅰ)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(Ⅱ)試對與的關(guān)系進行相關(guān)性檢驗,如與具有線性相關(guān)關(guān)系,求出對的回歸直線方程;
(Ⅲ)試預(yù)測加工個零件需要多少時間?
參考數(shù)據(jù):,.
附:);, ;
相關(guān)性檢驗的臨界值表
n-2 | 小概率 | n-2 | 小概率 | n-2 | 小概率 | |||
0.05 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | |||
1 | 0.997 | 1 | 4 | 0.811 | 0.917 | 7 | 0.666 | 0.798 |
2 | 0.950 | 0.990 | 5 | 0.754 | 0.874 | 8 | 0.632 | 0.765 |
3 | 0.878 | 0.959 | 6 | 0.707 | 0.834 | 9 | 0.602 | 0.735 |
注:表中的n為數(shù)據(jù)的組數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第二屆世界青年奧林匹克運動會,中國獲37金,13銀,13銅共63枚獎牌居獎牌榜首位,并打破十項青奧會記錄.由此許多人認為中國進入了世界體育強國之列,也有許多人持反對意見.有網(wǎng)友為此進行了調(diào)查,在參加調(diào)查的2 548名男性公民中有1 560名持反對意見,2 452名女性公民中有1 200人持反對意見,在運用這些數(shù)據(jù)說明中國的獎牌數(shù)是否與中國進入體育強國有無關(guān)系時,用什么方法最有說服力( )
A. 平均數(shù)與方差 B. 回歸直線方程
C. 獨立性檢驗 D. 概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30 min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸:
抽取順序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得=xi=9.97,s==≈0.212,≈18.439,(xi﹣)(i﹣8.5)=﹣2.78,
其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)
過程的進行而系統(tǒng)地變大或變小(若|r|<0.25,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地
變大或變小).
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(﹣3s,+3s)之外的零件,就認為這條生產(chǎn)線在這一天
的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
、購倪@一天抽檢的結(jié)果看,是否需對當天的生產(chǎn)過程進行檢查?
、谠(﹣3s,+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當天生產(chǎn)的零件尺寸的
均值與標準差.(精確到0.01)
附:樣本(xi,yi)(i=1,2,…,n)的相關(guān)系數(shù)r=,≈0.09.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品店為了了解氣溫對銷售量的影響,隨機記錄了該店1月份中5天的日銷售量(單位:千克)與該地當日最低氣溫(單位: )的數(shù)據(jù),如下表:
2 | 5 | 8 | 9 | 11 | |
12 | 10 | 8 | 8 | 7 |
(1)求出與的回歸方程;
(2)判斷與之間是正相關(guān)還是負相關(guān);若該地1月份某天的最低氣溫為6,請用所求回歸方程預(yù)測該店當日的營業(yè)額.
附: 回歸方程中, ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)常數(shù),函數(shù).
(1) 若,求的單調(diào)遞減區(qū)間;
(2) 若為奇函數(shù),且關(guān)于的不等式對所有的恒成立,求實數(shù)的取值范圍;
(3) 當時,若方程有三個不相等的實數(shù)根、、,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
分類 | 積極參加 班級工作 | 不太主動參 加班級工作 | 總計 |
學習積極性高 | 18 | 7 | 25 |
學習積極性一般 | 6 | 19 | 25 |
總計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:學生的學習積極性與對待班級工作的態(tài)度是否有關(guān),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,nan+1﹣(n+1)an=1(n∈N+)
(1)求數(shù)列{an}的通項公式;
(2)若 ,求數(shù)列{bn}的最大項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生的時間與性別的關(guān)系,得到下面的數(shù)據(jù):出生時間在晚上的男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.
(1)將2×2列聯(lián)表補充完整.
性別 | 出生時間 | 總計 | |
晚上 | 白天 | ||
男嬰 | |||
女嬰 | |||
總計 |
(2)能否在犯錯誤的概率不超過0.1的前提下認為嬰兒性別與出生時間有關(guān)系?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com