【題目】如圖,在多邊形中, , , , , 是線段上的一點,且,若將沿折起,得到幾何體.
(1)試問:直線與平面是否有公共點?并說明理由;
(2)若,且平面平面,求三棱錐的體積.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直棱柱ABC-A1B1C1的底面△ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,如圖,以C為原點,分別以CA,CB,CC1為x,y,z軸建立空間直角坐標系.
(1)求平面A1B1C的法向量;
(2)求直線AC與平面A1B1C夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列命題:(1)終邊相同的角的同名三角比的值相等;(2)終邊不同的角的同名三角比的值不同;(3)若,則是第一或第二象限角;(4)△中,若,則;其中正確命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】進入12月以來,某地區(qū)為了防止出現(xiàn)重污染天氣,堅持保民生、保藍天,嚴格落實機動車限行等一系列“管控令”.該地區(qū)交通管理部門為了了解市民對“單雙號限行”的贊同情況,隨機采訪了220名市民,將他們的意見和是否擁有私家車情況進行了統(tǒng)計,得到如下的列聯(lián)表:
贊同限行 | 不贊同限行 | 合計 | |
沒有私家車 | 90 | 20 | 110 |
有私家車 | 70 | 40 | 110 |
合計 | 160 | 60 | 220 |
(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認為“是否贊同限行與是否擁有私家車”有關(guān);
(2)為了了解限行之后是否對交通擁堵、環(huán)境污染起到改善作用,從上述調(diào)查的不贊同限行的人員中按分層抽樣抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少抽到1名“沒有私家車”人員的概率.
附:.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有兩個極值點, ().
(1)求實數(shù)的取值范圍;
(2)設(shè),若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,當時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù)),在處的切線方程是.
(1)求實數(shù), 的值;
(2)若對任意的, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓內(nèi)有一點P(-1,2),AB為過點P且傾斜角為的弦.
(1)當時,求AB的長;
(2)當弦AB被點P平分時,寫出直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 過點,且離心率為.過點的直線與橢圓交于, 兩點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若點為橢圓的右頂點,探究: 是否為定值,若是,求出該定值,若不是,請說明理由.(其中, , 分別是直線、的斜率)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com