用反證法證明“若a,b,c<3,則a,b,c中至少有一個小于1”時,“假設(shè)”應(yīng)為

A.假設(shè)a,b,c至少有一個大于1B.假設(shè)a,b,c都大于1
C.假設(shè)a,b,c至少有兩個大于1D.假設(shè)a,b,c都不小于1

D

解析試題分析:“a,b,c中至少有一個小于1”的反面是“假設(shè)a,b,c都不小于1”,故選D。
考點(diǎn):反證法
點(diǎn)評:本題結(jié)合角的比較考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.
反證法的步驟是:
(1)假設(shè)結(jié)論不成立;
(2)從假設(shè)出發(fā)推出矛盾;
(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,反設(shè)正確的是(   )

A.假設(shè)三內(nèi)角都不大于60度; B.假設(shè)三內(nèi)角都大于60度;
C.假設(shè)三內(nèi)角至多有一個大于60度; D.假設(shè)三內(nèi)角至多有兩個大于60度。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在應(yīng)用數(shù)學(xué)歸納法證明凸n變形的對角線為條時,第一步檢驗(yàn)n等于(。

A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

下列推理合理的是(  )

A.是增函數(shù),則
B.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a4/4/1gnvn2.png" style="vertical-align:middle;" />,則
C.為銳角三角形,則
D.直線,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如下圖,根據(jù)圖中的數(shù)構(gòu)成的規(guī)律,a所表示的數(shù)是(   )

A.12 B.48 C.60 D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知


根據(jù)以上等式,可猜想出的一般結(jié)論是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

觀察下列各式:72=49,73=343,74=2401,…,則72011的末兩位數(shù)字為(  )

A.01 B.43
C.07 D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運(yùn)算法則:
①“mn=nm”類比得到“a·b=b·a”;
②“(m+n)t=mt+nt”類比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”類比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt⇒m=x”類比得到“p≠0,a·p=x·p⇒a=x”;
⑤“|m·n|=|m|·|n|”類比得到“|a·b|=|a|·|b|”;
⑥“=”類比得到“=”.
以上的式子中,類比得到的結(jié)論正確的個數(shù)是(  )

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知f(x+1)=,f(1)=1(x∈N*),猜想f(x)的表達(dá)式為(  )

A.f(x)= B.f(x)= 
C.f(x)= D.f(x)= 

查看答案和解析>>

同步練習(xí)冊答案