【題目】高爾頓(釘)板是在一塊豎起的木板上釘上一排排互相平行、水平間隔相等的圓柱形鐵釘(如圖),并且每一排釘子數(shù)目都比上一排多一個(gè),一排中各個(gè)釘子恰好對(duì)準(zhǔn)上面一排兩相鄰鐵釘?shù)恼醒?從入口處放入一個(gè)直徑略小于兩顆釘子間隔的小球,當(dāng)小球從兩釘之間的間隙下落時(shí),由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過(guò)兩鐵釘?shù)拈g隙,又碰到下一排鐵釘.如此繼續(xù)下去,在最底層的5個(gè)出口處各放置一個(gè)容器接住小球.
(Ⅰ)理論上,小球落入4號(hào)容器的概率是多少?
(Ⅱ)一數(shù)學(xué)興趣小組取3個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號(hào)容器的小球個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ)的分布列見(jiàn)解析,數(shù)學(xué)期望是
【解析】
(Ⅰ)若要小球落入4號(hào)容器,則在通過(guò)的四層中有三層需要向右,一層向左,根據(jù)二項(xiàng)分布公式可求得概率;(Ⅱ)落入4號(hào)容器的小球個(gè)數(shù)的可能取值為0,1,2,3,算出對(duì)應(yīng)事件概率,利用離散型隨機(jī)變量分布列數(shù)學(xué)期望的公式可求得結(jié)果.
解:(Ⅰ)記“小球落入4號(hào)容器”為事件,
若要小球落入4號(hào)容器,則在通過(guò)的四層中有三層需要向右,一層向左,
∴理論上,小球落入4號(hào)容器的概率.
(Ⅱ)落入4號(hào)容器的小球個(gè)數(shù)的可能取值為0,1,2,3,
∴,,
,,
∴的分布列為:
0 | 1 | 2 | 3 | |
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形幾何圖形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出,它是一個(gè)自相似的例子,其構(gòu)造方法是:
(1)取一個(gè)實(shí)心的等邊三角形(圖1);
(2)沿三邊中點(diǎn)的連線,將它分成四個(gè)小三角形;
(3)挖去中間的那一個(gè)小三角形(圖2);
(4)對(duì)其余三個(gè)小三角形重復(fù)(1)(2)(3)(4)(圖3).
制作出來(lái)的圖形如圖4,….
若圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】峰谷電是目前在城市居民當(dāng)中開(kāi)展的一種電價(jià)類(lèi)別.它是將一天24小時(shí)劃分成兩個(gè)時(shí)間段,把8:00—22:00共14小時(shí)稱(chēng)為峰段,執(zhí)行峰電價(jià),即電價(jià)上調(diào);22:00—次日8:00共10個(gè)小時(shí)稱(chēng)為谷段,執(zhí)行谷電價(jià),即電價(jià)下調(diào).為了進(jìn)一步了解民眾對(duì)峰谷電價(jià)的使用情況,從某市一小區(qū)隨機(jī)抽取了50 戶住戶進(jìn)行夏季用電情況調(diào)查,各戶月平均用電量以,,,,,(單位:度)分組的頻率分布直方圖如下圖:
若將小區(qū)月平均用電量不低于700度的住戶稱(chēng)為“大用戶”,月平均用電量低于700度的住戶稱(chēng)為“一般用戶”.其中,使用峰谷電價(jià)的戶數(shù)如下表:
月平均用電量(度) | ||||||
使用峰谷電價(jià)的戶數(shù) | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估計(jì)所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:
一般用戶 | 大用戶 | |
使用峰谷電價(jià)的用戶 | ||
不使用峰谷電價(jià)的用戶 |
()根據(jù)()中的列聯(lián)表,能否有的把握認(rèn)為 “用電量的高低”與“使用峰谷電價(jià)”有關(guān)?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.
(1)求P(X=2);
(2)求事件“X=4且甲獲勝”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】水車(chē)在古代是進(jìn)行灌溉引水的工具,是人類(lèi)的一項(xiàng)古老的發(fā)明,也是人類(lèi)利用自然和改造自然的象征.如圖是一個(gè)半徑為R的水車(chē),一個(gè)水斗從點(diǎn)A(3,-3)出發(fā),沿圓周按逆時(shí)針?lè)较騽蛩傩D(zhuǎn),且旋轉(zhuǎn)一周用時(shí)60秒.經(jīng)過(guò)t秒后,水斗旋轉(zhuǎn)到P點(diǎn),設(shè)P的坐標(biāo)為(x,y),其縱坐標(biāo)滿足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).則下列敘述錯(cuò)誤的是( )
A.R=6,ω=,φ=-
B.當(dāng)t∈[35,55]時(shí),點(diǎn)P到x軸的距離的最大值為6
C.當(dāng)t∈[10,25]時(shí),函數(shù)y=f(t)單調(diào)遞減
D.當(dāng)t=20時(shí),|PA|=6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,每個(gè)側(cè)面均為正方形,為底邊的中點(diǎn),為側(cè)棱的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)=[].
(Ⅰ)若曲線y= f(x)在點(diǎn)(1,)處的切線與軸平行,求a;
(Ⅱ)若在x=2處取得極小值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘數(shù)學(xué)家阿波羅尼斯在其巨著《圓錐曲線論》中提出“在同一平面上給出三點(diǎn),若其中一點(diǎn)到另外兩點(diǎn)的距離之比是一個(gè)大于零且不等于1的常數(shù),則該點(diǎn)軌跡是一個(gè)圓”現(xiàn)在,某電信公司要在甲、乙、丙三地搭建三座5G信號(hào)塔來(lái)構(gòu)建一個(gè)三角形信號(hào)覆蓋區(qū)域,以實(shí)現(xiàn)5G商用,已知甲、乙兩地相距4公里,丙、甲兩地距離是丙、乙兩地距離的倍,則這個(gè)三角形信號(hào)覆蓋區(qū)域的最大面積(單位:平方公里)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的方程為,其中常數(shù),F是拋物線的焦點(diǎn).
(1)設(shè)A是點(diǎn)F關(guān)于頂點(diǎn)O的對(duì)稱(chēng)點(diǎn),P是拋物線上的動(dòng)點(diǎn),求的最大值;
(2)設(shè),,是兩條互相垂直,且均經(jīng)過(guò)點(diǎn)F的直線,與拋物線交于點(diǎn)A,B,與拋物線交于點(diǎn)C,D,若點(diǎn)G滿足,求點(diǎn)G的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com