【題目】如圖,已知矩形ABCD所在平面與等腰直角三角形BEC所在平面互相垂直,BE⊥EC,AB=BE,M為線段AE的中點(diǎn).
(Ⅰ) 證明:BM⊥平面AEC;
(Ⅱ) 求MC與平面DEC所成的角的余弦值.
【答案】證明:(Ⅰ)因?yàn)槠矫鍭BCD⊥平面BEC,
所以AB⊥平面BEC,故AB⊥EC.
因?yàn)锽E⊥EC,所以EC⊥平面ABE,
故EC⊥BM.
因?yàn)锳B=BE,M為AE的中點(diǎn),所以AE⊥BM.
所以BM⊥平面AEC.
解:(Ⅱ)如圖,將幾何體ABCDE補(bǔ)成三棱柱AFD﹣BEC,
設(shè)EF的中點(diǎn)為G,連結(jié)MG,GC.
因?yàn)镸G∥BE,所以MG⊥平面DEC.
因此∠MCG為MC與平面DEC所成的角.
不妨設(shè)AB=2,則AB=BE=EC=2,
因此MG=1, , ,
故 ,
所以MC與平面DEC所成的角的余弦值為 .
【解析】(Ⅰ)由已知推導(dǎo)出AB⊥EC,EC⊥BM,AE⊥BM,由此能證明BM⊥平面AEC.(Ⅱ)將幾何體ABCDE補(bǔ)成三棱柱AFD﹣BEC,設(shè)EF的中點(diǎn)為G,連結(jié)MG,GC,推導(dǎo)出∠MCG為MC與平面DEC所成的角,由此能求出MC與平面DEC所成的角的余弦值.
【考點(diǎn)精析】本題主要考查了直線與平面垂直的判定和空間角的異面直線所成的角的相關(guān)知識點(diǎn),需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個正三角形等分成4個全等的小正三角形,將中間的一個正三角形挖掉(如圖1),再將剩余的每個正三角形分成4個全等的小正三角形,并將中間的一個正三角形挖掉,得圖2,如此繼續(xù)下去…
(1)圖3共挖掉多少個正三角形?
(2)設(shè)原正三角形邊長為a,第n個圖形共挖掉多少個正三角形?這些正三角形面積和為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三角形ABC的頂點(diǎn)坐標(biāo)為A(﹣1,5)、B(﹣2,﹣1)、C(4,3).
(1)求AB邊上的高線所在的直線方程;
(2)求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+t,g(x)=x2﹣t(t∈R)
(1)當(dāng)x∈[2,3]時,求函數(shù)f(x)的值域(用t表示)
(2)設(shè)集合A={y|y=f(x),x∈[2,3]},B={y|y=|g(x)|,x∈[2,3]},是否存在正整數(shù)t,使得A∩B=A.若存在,請求出所有可能的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市規(guī)定,高中學(xué)生在校期間須參加不少于80小時的社區(qū)服務(wù)才合格.某校隨機(jī)抽取20位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.
(1)求抽取的20人中,參加社區(qū)服務(wù)時間不少于90小時的學(xué)生人數(shù);
(2)從參加社區(qū)服務(wù)時間不少于90小時的學(xué)生中任意選取2人,求所選學(xué)生的參加社區(qū)服務(wù)時間在同一時間段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知動點(diǎn)到定點(diǎn)的距離與到定直線的距離之比為.
(1)求動點(diǎn)的軌跡的方程;
(2)已知為定直線上一點(diǎn).
①過點(diǎn)作的垂線交軌跡于點(diǎn)(不在軸上),求證:直線與的斜率之積是定值;
②若點(diǎn)的坐標(biāo)為,過點(diǎn)作動直線交軌跡于不同兩點(diǎn),線段上的點(diǎn)滿足,求證:點(diǎn)恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計(jì)如圖所示.圓的圓心與矩形對角線的交點(diǎn)重合,且圓與矩形上下兩邊相切(為上切點(diǎn)),與左右兩邊相交(, 為其中兩個交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m,且.設(shè),透光區(qū)域的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式,并求出定義域;
(2)根據(jù)設(shè)計(jì)要求,透光區(qū)域與矩形窗面的面積比值越大越好.當(dāng)該比值最大時,求邊的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信運(yùn)動和運(yùn)動手環(huán)的普及,增強(qiáng)了人民運(yùn)動的積極性,每天一萬步稱為一種健康時尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開展“每天一萬步”活動,經(jīng)過幾個月的扎實(shí)落地工作后,學(xué)校想了解全校師生每天一萬步的情況,學(xué)校界定一人一天走路不足千步為不健康生活方式,不少于千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計(jì)全校師生的情況,結(jié)合實(shí)際及便于分層抽樣,認(rèn)定全校教師人數(shù)為人,高一學(xué)生人數(shù)為人,高二學(xué)生人數(shù)人,高三學(xué)生人數(shù),從中抽取人作為調(diào)查對象,得到了如圖所示的這人的頻率分布直方圖,這人中有人被學(xué)校界定為不健康生活方式者.
(1)求這次作為抽樣調(diào)查對象的教師人數(shù);
(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);
(3)校辦公室欲從全校師生中速記抽取人作為“每天一萬步”活動的慰問對象,計(jì)劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵元,超健康生活方式者表彰獎勵元,一般生活方式者鼓勵性獎勵元,利用樣本估計(jì)總體,將頻率視為概率,求這次校辦公室慰問獎勵金額恰好為元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市司法部門為了宣傳《憲法》舉辦法律知識問答活動,隨機(jī)對該市18~68歲的人群抽取一個容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對回答問題情況進(jìn)行統(tǒng)計(jì)后,結(jié)果如下表所示.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的比例 |
第1組 | [18,28) | 5 | 0.5 |
第2組 | [28,38) | 18 | a |
第3組 | [38,48) | 27 | 0.9 |
第4組 | [48,58) | x | 0.36 |
第5組 | [58,68) | 3 | 0.2 |
(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎,求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com