精英家教網 > 高中數學 > 題目詳情

【題目】設直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A、B兩個不同的點,與x軸相交于點C,記O為坐標原點. (Ⅰ)證明:a2 ;
(Ⅱ)若 ,求△OAB的面積取得最大值時的橢圓方程.

【答案】證明:(Ⅰ)由y=k(x+1)(k≠0)得 . 并代入橢圓方程3x2+y2=a2消去x得(3+k2)y2﹣6ky+3k2﹣k2a2=0
∵直線l與橢圓相交于兩個不同的點得△=36k2﹣4(3+k2)(3k2﹣k2a2)>0,

(Ⅱ)解:設A(x1 , y1),B(x2 , y2).
由①,得 ,②
,而點C(﹣1,0),
∴(﹣1﹣x1 , ﹣y1)=2(x2+1,y2),
得y1=﹣2y2代入②,得 ,③
∴△OAB的面積 = = = ,當且僅當k2=3,即 時取等號.
把k的值代入③可得
這兩組值分別代入①,均可解出a2=15.
∴△OAB的面積取得最大值的橢圓方程是3x2+y2=15
【解析】(1)把直線l的方程代入橢圓方程,由直線與橢圓相交于A、B兩個不同的點可得△>0,解出即可證明;(2)設A(x1 , y1),B(x2 , y2).利用根與系數的關系及向量相等得到y(tǒng)1 , y2的關系及可用k來表示,再利用三角形的面積公式∴△OAB的面積 及基本不等式的性質即可得出取得面積最大值時的k的值,進而得到a的值.
【考點精析】關于本題考查的橢圓的標準方程,需要了解橢圓標準方程焦點在x軸:,焦點在y軸:才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某中學生物興趣小組在學校生物園地種植了一批名貴樹苗,為了了解樹苗生長情況,從這批樹苗中隨機地測量了其中50棵樹苗的高度(單位:厘米).把這些高度列成了如下的頻率分布表:

(1)在這批樹苗中任取一棵,其高度不低于80厘米的概率大約是多少?

(2)這批樹苗的平均高度大約是多少?(用各組的中間值代替各組數據的平均值)

(3)為了進一步獲得研究資料,若從組中移出一棵樹苗,從組中移出兩棵樹苗進行試驗研究,則組中的樹苗組中的樹苗同時被移出的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,小華和小明兩個小伙伴在一起做游戲,他們通過劃拳(剪刀、石頭、布)比賽決勝誰首先登上第3個臺階,他們規(guī)定從平地開始,每次劃拳贏的一方登上一級臺階,輸的一方原地不動,平局時兩個人都上一級臺階,如果一方連續(xù)兩次贏,那么他將額外獲得一次上一級臺階的獎勵,除非已經登上第3個臺階,當有任何一方登上第3個臺階時,游戲結束,記此時兩個小伙伴劃拳的次數為

(1)求游戲結束時小華在第2個臺階的概率;

(2)求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】f(x)是定義在R上的函數,且對任意的x、y都有f(x+y)=f(x)+f(y)﹣1成立.當x>0時,f(x)>1.
(1)若f(4)=5,求f(2);
(2)證明:f(x)在R上是增函數;
(3)若f(4)=5,解不等式f(3m2﹣m﹣2)<3.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校隨機抽取100名學生調查寒假期間學生平均每天的學習時間,被調查的學生每天用于學習的時間介于1小時和11小時之間,按學生的學習時間分成5組:第一組[1,3),第二組[3,5),第三組[5,7),第四組[7,9),第五組[9,11],繪制成如圖所示的頻率分布直方圖.
(Ⅰ)求學習時間在[7,9)的學生人數;
(Ⅱ)現要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機抽取2人交流學習心得,求這2人中至少有1人的學習時間在第四組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中,既是偶函數,又在區(qū)間(0,+∞)上單調遞減的是(
A.
B.y=x2
C.y=﹣x|x|
D.y=x2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,則關于函數F(x)=f(f(x))的零點個數,正確的結論是 . (寫出你認為正確的所有結論的序號)
①k=0時,F(x)恰有一個零點.②k<0時,F(x)恰有2個零點.
③k>0時,F(x)恰有3個零點.④k>0時,F(x)恰有4個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著生活水平的提高,人們對空氣質量的要求越來越高,某機構為了解公眾對“車輛限行”的態(tài)度,隨機抽查,并將調查情況進行整理后制成下表:

年齡(歲)

頻數

贊成人數

(1)世界聯合國衛(wèi)生組織規(guī)定: 歲為青年, 為中年,根據以上統(tǒng)計數據填寫以下列聯表:

青年人

中年人

合計

不贊成

贊成

合計

(2)判斷能否在犯錯誤的概率不超過的前提下,認為贊成“車柄限行”與年齡有關?

附: ,其中

獨立檢驗臨界值表:

(3)若從年齡的被調查中各隨機選取人進行調查,設選中的兩人中持不贊成“車輛限行”態(tài)度的人員為,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=Asin(ωx+)(A,ω,是常數,A>0,ω>0)的部分圖象如圖所示,下列結論: ①最小正周期為π;
②將f(x)的圖象向左平移 個單位,所得到的函數是偶函數;
③f(0)=1;


其中正確的是(

A.①②③
B.②③④
C.①④⑤
D.②③⑤

查看答案和解析>>

同步練習冊答案