【題目】在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,A,B兩點(diǎn)的極坐標(biāo)分別為.

(1)求圓C的普通方程和直線的直角坐標(biāo)方程;

(2)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最小值.

【答案】(1)圓C的普通方程為直線l的直角坐標(biāo)方程為;(2)4.

【解析】

試題分析:(1)由消去參數(shù)可得圓的普通方程,由可化直線極坐標(biāo)方程為直角坐標(biāo)方程;(2)把點(diǎn)的極坐標(biāo)化為直角坐標(biāo)后,知這兩點(diǎn)在直線,計(jì)算,因此只要求得點(diǎn)到直線的距離的最小值即能得面積的最小值.可用點(diǎn)到直線距離公式,也可用幾何法求得圓心到直線的距離得最小值.

試題解析:1)由

消去參數(shù)t,得,

所以圓C的普通方程為

,

換成直角坐標(biāo)系為,

所以直線l的直角坐標(biāo)方程為

2化為直角坐標(biāo)為在直線l上,

并且

設(shè)P點(diǎn)的坐標(biāo)為,

則P點(diǎn)到直線l的距離為

所以面積的最小值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】面對某種流感病毒,各國醫(yī)療科研機(jī)構(gòu)都在研究疫苗,現(xiàn)有AB、C三個(gè)獨(dú)立的研究機(jī)構(gòu)在一定的時(shí)期研制出疫苗的概率分別為求:

1他們能研制出疫苗的概率;

2至多有一個(gè)機(jī)構(gòu)研制出疫苗的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn).

(1)求橢圓方程;

(2)設(shè)不過原點(diǎn)的直線,與該橢圓交于兩點(diǎn),直線的斜率依次為,滿足,試問:當(dāng)變化時(shí),是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

1判斷的奇偶性并用定義證明;

2判斷的單調(diào)性并有合理說明;

3當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】編號1~15的小球共15個(gè),求總體號碼的平均值,試驗(yàn)者從中抽3個(gè)小球,以它們的平均數(shù)估計(jì)總體平均數(shù),以編號2為起點(diǎn),用系統(tǒng)抽樣法抽3個(gè)小球,則這3個(gè)球的編號平均數(shù)是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1處取得極值,求的值;

2討論的單調(diào)性;

3證明:為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費(fèi)用是每日92元,根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金元只取整數(shù),用元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入-管理費(fèi)用)

(1)求函數(shù)的解析式及其定義域;

(2)當(dāng)租金定為多少時(shí),才能使一天的純收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組幾何體中,都是多面體的一組是( )

A. 三棱柱、四棱臺、球、圓錐 B. 三棱柱、四棱臺、正方體、圓臺

C. 三棱柱、四棱臺、正方體、六棱錐 D. 圓錐、圓臺、球、半球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于四種命題的真假判斷正確的是( )

A. 原命題與其逆否命題的真值相同 B. 原命題與其逆命題的真值相同

C. 原命題與其否命題的真值相同 D. 原命題的逆命題與否命題的真值相反

查看答案和解析>>

同步練習(xí)冊答案