【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,﹣ <φ<0)的圖象與y軸的交點為(0,1),它在y軸右側的第一個最高點和第一個最低點的坐標分別為(x0 , 2)和(x0+2π,﹣2).
(1)求函數(shù)f(x)的解析式;
(2)若銳角θ滿足f(2θ+ )= ,求f(2θ)的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}與{bn}滿足an+1﹣an=2(bn+1﹣bn),n∈N+ , bn=2n﹣1,且a1=2.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設 ,Tn為數(shù)列{cn}的前n項和,求Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) , .
(1)求函數(shù)f(x)的值域;
(2)已知銳角△ABC的兩邊長a,b分別為函數(shù)f(x)的最小值與最大值,且△ABC的外接圓半徑為 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記等差數(shù)列{an}的前n項和為Sn .
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)若a1=1,對任意的n∈N*,n≥2,均有 , , 是公差為1的等差數(shù)列,求使 為整數(shù)的正整數(shù)k的取值集合;
(3)記bn=a (a>0),求證: ≤ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,其前n項和為Sn , 且a1a5=64,S5﹣S3=48.
(1)求數(shù)列{an}的通項公式;
(2)設有正整數(shù)m,l(5<m<l),使得am , 5a5 , al成等差數(shù)列,求m,l的值;
(3)設k,m,l∈N*,k<m<1,對于給定的k,求三個數(shù) 5ak , am , al經適當排序后能構成等差數(shù)列的充要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(Ⅰ)若函數(shù)g(x)=f(x)﹣ax在其定義域內為增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的極小值;
(Ⅲ)設F(x)=2f(x)﹣3x2﹣kx(k∈R),若函數(shù)F(x)存在兩個零點m,n(0<m<n),且2x0=m+n.問:函數(shù)F(x)在點(x0 , F(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C所對的邊分別為a,b,c,且3bsinA=c,D為AC邊上一點.
(1)若D是AC的中點,且 , ,求△ABC的最短邊的邊長.
(2)若c=2b=4,S△BCD= ,求DC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司對應聘人員進行能力測試,測試成績總分為150分.下面是30位應聘人員的測試成績的測試成績:64,116,82,93,102,82,104,67,93,118,70,95,119,106,83,72,95,106,72,119,122,95,86,74,131,76,88,108,97,123.
(1)求應聘人員的測試成績的樣本平均數(shù) (保留小數(shù)點后兩位);
(2)根據(jù)以上數(shù)據(jù)完成下面莖葉圖:
應聘人員的測試成績 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
(3)由莖葉圖可以認為,應聘人員的測試成績Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù) ,σ2近似為樣本方差s2 , 其中s2=18.872 , 利用該正態(tài)分布,求P(76.40<Z<114.14).
附:若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)=0.6826,
P(μ﹣2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com