如圖,在正三棱柱中,的中點,是線段上的動點(與端點不重合),且.

(1)若,求證:;

(2)若直線與平面所成角的大小為,求的最大值.

 

【答案】

(1)當時, 根據(jù),所以 ;

(2)

當且僅當,即時,等號成立.

【解析】

試題分析:如圖,建立空間直角系,則

 (1分)

(1)當時,,此時,, (3分)

因為,所以 (5分)

(2)設(shè)平面ABN的法向量,則,

,取。而, (7分) (9分)

,故 (11分)

當且僅當,即時,等號成立.  (12分)

考點:本題主要考查立體幾何中的垂直關(guān)系,角的計算。

點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,本題利用向量簡化了證明過程。對計算能力要求較高。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在正三棱柱中,AB=2,AA1=2由頂點B沿棱柱側(cè)面經(jīng)過棱AA1到頂點C1的最短路線與棱AA1的交點記為M,求:
(1)該最短路線的長及
A1MAM
的值.
(2)平面C1MB與平面ABC所成二面角(銳角)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三棱柱中,底面△的邊長為的中點,三棱柱的體積

(1)求該三棱柱的側(cè)面積;

(2)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三11月月考文科數(shù)學試卷 題型:填空題

如圖,在正三棱柱中,D為棱的中點,若截面是面積為6的直角三角形,則此三棱柱的體積為        

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年西藏拉薩中學高三第七次月考考試理科數(shù)學 題型:填空題

如圖,在正三棱柱中,.若二面角的大小為,則點到平面的距離為                 。  

 

查看答案和解析>>

同步練習冊答案