【題目】已知函數(shù)=.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)已知在△ABC中,A,B,C的對邊分別為a,b,c,若,,求.
【答案】(1)函數(shù)的單調(diào)遞增區(qū)間是(2)b=c=2
【解析】
(1)利用誘導公式、二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間;(2)由,求得,利用余弦定理,結(jié)合,列方程組可求得的值.
(1)∵ =sin(3π+x)·cos(πx)+cos2(+x),
∴ (cos x)+(sin x)
=,
由 2kπ2x-2kπ+,k∈Z,
可得函數(shù)的單調(diào)遞增區(qū)間是k∈Z.
(2)由,得,sin(2A-)+=,
∵0<A<π,∴0<2A<2π,
∵a=2,b+c=4、伲
根據(jù)余弦定理得,
4=+2bccos A=+bc=(b+c)3bc=163bc,
∴bc=4、冢
聯(lián)立①②得,b=c=2..
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點,圓,以動點為圓心的圓經(jīng)過點,且圓與圓內(nèi)切.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)若直線過點,且與曲線交于兩點,則在軸上是否存在一點,使得軸平分?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人設(shè)計一項單人游戲,規(guī)則如下:先將一棋子放在如右圖所示的正方形ABCD(邊長為3個單位)的頂點A處,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走的單位,如果擲出的點數(shù)為(=1,2,,6),則棋子就按逆時針方向行走個單位,一直循環(huán)下去.某人拋擲三次骰子后,棋子恰好又回到點A處的所有不同走法共有
A.22種B.24種C.25種D.36種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,動圓與圓外切,且圓與直線相切,記動圓圓心的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)設(shè)過定點的動直線與曲線交于兩點,試問:在曲線上是否存在點(與兩點相異),當直線的斜率存在時,直線的斜率之和為定值?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com