在數(shù)列{an}中,如果對任意n∈N*都有(k是不為零的常數(shù)),則稱{an}為等差比數(shù)列,k稱為公差比.

(1)證明:公比不為1的等比數(shù)列是等差比數(shù)列,且公比等于公差比;

(2)判斷兩個數(shù)列an+1=2an-1(an≠1),bn=-λn+2是否為等差比數(shù)列;

(3)若數(shù)列{cn}是首項為c1=a且c2=b(a≠b),公差比為k的等差比數(shù)列,求{cn}的通項公式.

答案:
解析:

  (1)設(shè)等比數(shù)列的通項為所以

  所以公比不為1的等比數(shù)列是等差比數(shù)列,且公比等于公差比.

  (2)由

  

  由故數(shù)列{}是等差比數(shù)列.

  由

  

  此時數(shù)列{bn}不是等差比數(shù)列.

  .此時數(shù)列{bn}是等差比數(shù)列.

  (3)數(shù)列{}是公差比為k的等差比數(shù)列,

  

  

  

  

  

  綜上可知:

  


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

6、在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前10項的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語句是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

12、在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當數(shù)列{xn}的周期最小時,該數(shù)列的前2010項的和是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前5項的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處應(yīng)填
i≥5
i≥5

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省佛山市南海區(qū)高考題例研究數(shù)學試卷(文科)(解析版) 題型:選擇題

在數(shù)列{an}中,a1=1,an=an-1+n,n≥2.為計算這個數(shù)列前10項的和,現(xiàn)給出該問題算法的程序框圖(如圖所示),則圖中判斷框(1)處合適的語句是( )

A.i≥8
B.i≥9
C.i≥10
D.i≥11

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年浙江省舟山市七校高三(下)3月聯(lián)考數(shù)學試卷(理科)(解析版) 題型:選擇題

在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對于任意的正整數(shù)m均成立,那么稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當數(shù)列{xn}的周期最小時,該數(shù)列的前2010項的和是( )
A.669
B.670
C.1339
D.1340

查看答案和解析>>

同步練習冊答案