【題目】(本小題滿分12分)

如圖,已知四棱錐,底面為菱形,,

, 平面 分別是的中點(diǎn)。

1證明: ;

2上的動(dòng)點(diǎn),與平面所成最大角

的正切值為,求二面角的余弦值。

【答案】(1)詳見解析(2)

【解析】試題分析:(1)由已知條件推導(dǎo)出, ,由線面垂直得,由此證明

(2)設(shè)上任意一點(diǎn),連接、,由平面,得與平面所成的角,過,連接,由已知條件得為二面角的平面角,由此求出二面角的余弦值.

試題解析:(1)證明:由四邊形為菱形, ,可得為正三角形。

因?yàn)?/span>為BC的中點(diǎn),所以,又,因此

因?yàn)?/span>, 平面,所以,

,所以

(2)設(shè)上任意一點(diǎn),連接

由(1)知,

與平面所成的角,在中, ,

所以當(dāng)最短時(shí), 最大,即當(dāng)時(shí), 最大,

此時(shí),此時(shí),又,

所以 =45,于是

因?yàn)?/span>平面, 平面,所以平面平面,

,則由面面垂直的性質(zhì)定理可知: 平面,

所以,過過,連接, 平面,

所以,則為二面角的平面角,

中, ,

的中點(diǎn), ,

中, ,

=,

中, ==

即二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以M(﹣1,0)為圓心的圓與直線 相切.
(1)求圓M的方程;
(2)過點(diǎn)(0,3)的直線l被圓M截得的弦長為 ,求直線l的方程.
(3)已知A(﹣2,0),B(2,0),圓M內(nèi)的動(dòng)點(diǎn)P滿足|PA||PB|=|PO|2 , 求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O:x2+y2=2,⊙M:(x+2)2+(y+2)2=2,點(diǎn)P的坐標(biāo)為(1,1).
(1)過點(diǎn)O作⊙M的切線,求該切線的方程;
(2)若點(diǎn)Q是⊙O上一點(diǎn),過Q作⊙M的切線,切點(diǎn)分別為E,F(xiàn),且∠EQF= ,求Q點(diǎn)的坐標(biāo);
(3)過點(diǎn)P作兩條相異直線分別與⊙O相交于A,B,且直線PA與直線PB的傾斜角互補(bǔ),試判斷直線OP與AB是否平行?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中, 是邊長為的等邊三角形, 分別是的中點(diǎn).

(1)求證: 平面;

(2)求證: 平面

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(b﹣8)x﹣a﹣ab,當(dāng)x∈(﹣3,2)時(shí),f(x)>0,當(dāng)x∈(﹣∞,﹣3)∪(2,+∞)時(shí),f(x)<0.
(1)求f(x)的解析式;
(2)若不等式ax2+bx+c≤0的解集為R,求c的取值范圍;
(3)當(dāng)x>﹣1時(shí),求y= 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx+ax2+x+1.

(I)a=﹣2時(shí),求函數(shù)f(x)的極值點(diǎn);

(Ⅱ)當(dāng)a=0時(shí),證明xex≥f(x)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,為了較為合理地確定居民日常用水量的標(biāo)準(zhǔn),通過抽樣獲得了100位居民某年的月均用水量(單位:噸),右表是100位居民月均用水量的頻率分布表,根據(jù)右表解答下列問題:

分組

頻數(shù)

頻率

[0,1)

10

b

[1,2)

20

0.20

[2,3)

a

0.30

[3,4)

20

0.20

[4,5)

10

0.10

[5,6]

10

0.10

合計(jì)

100

1.00


(1)求表中a和b的值;
(2)請(qǐng)將頻率分布直方圖補(bǔ)充完整,并根據(jù)直方圖估計(jì)該市每位居民月均用水量的眾數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)當(dāng)時(shí), 恒成立,求的取值范圍;

(3)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fk(n)為關(guān)于n的k(k∈N)次多項(xiàng)式.?dāng)?shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn . 對(duì)于任意的正整數(shù)n,an+Sn=fk(n)都成立. (Ⅰ)若k=0,求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)試確定所有的自然數(shù)k,使得數(shù)列{an}能成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案