【題目】某種商品價(jià)格與該商品日需求量之間的幾組對照數(shù)據(jù)如表:

價(jià)格x(元/kg)

10

15

20

25

30

日需求量y(kg)

11

10

8

6

5

參考公式:線性回歸方程 ,其中
(1)求y關(guān)于x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測值為多少?

【答案】
(1)解:由所給數(shù)據(jù)計(jì)算得 , , , ,

∴所求線性回歸方程為y=﹣0.32x+14.4


(2)解:由(1)知當(dāng)x=40時(shí),y=﹣0.32×40+14.4=1.6,

故當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測值為1.6kg


【解析】(1)根據(jù)回歸系數(shù)公式計(jì)算回歸系數(shù),得出回歸方程;(2)把x=40,代入回歸方程解出y即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:( )
①向量 , 不共線,則向量 與向量 一定不共線
②對任意向量 , ,則 恒成立
③在同一平面內(nèi),對兩兩均不共線的向量 , , ,若給定單位向量 和正數(shù) ,總存在單位向量 和實(shí)數(shù) ,使得
則正確的序號(hào)為( )
A.①②③
B.①③
C.②③
D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)檎麛?shù)集的函數(shù)f(x)= ,f1(x)=f(x),fn(x)=f[fn﹣1(x)].若fn(21)=1,則n=;若f4(x)=1,則x所有的值構(gòu)成的集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一同學(xué)在電腦中打出如下若干個(gè)圓:○●○○●○○○●○○○○●○○○○○●…,若依此規(guī)律繼續(xù)下去,得到一系列的圓,則在前2012個(gè)圓中共有●的個(gè)數(shù)是(
A.61
B.62
C.63
D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知 =
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且
(1)求角A的大小;
(2)若a=3,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,a2n=n﹣an , a2n+1=an+1(n∈N*),則a1+a2+a3+…+a40等于(
A.222
B.223
C.224
D.225

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的離心率e= ,其左右焦點(diǎn)分別為F1 , F2 , 過F1的直線交橢圓于A,B兩點(diǎn),且△ABF2的周長為4

(1)求橢圓的方程;
(2)如圖,直線x=ty+m交橢圓于不同兩點(diǎn)C,D,若以線段CD為直徑的圓過原點(diǎn)O,求|CD|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)對五年級(jí)的學(xué)生進(jìn)行體質(zhì)測試,已測得五年級(jí)一班30名學(xué)生的跳遠(yuǎn)成績(單位:cm),用莖葉圖統(tǒng)計(jì)如圖,男生成績在175cm以上(包括175cm)定義為合格,成績在175cm以下(不含175cm)定義為“不合格”;女生成績在165以上(包括165cm)定義為“合格”,成績在165cm以下(不含165cm)定義為“不合格”.

(1)求男生跳遠(yuǎn)成績的中位數(shù).
(2)根據(jù)男女生的不同,用分層抽樣的方法從該班學(xué)生中抽取1個(gè)容量為5的樣本,求抽取的5人中女生的人數(shù).
(3)以此作為樣本,估計(jì)該校五年級(jí)學(xué)生體質(zhì)的合格率.

查看答案和解析>>

同步練習(xí)冊答案