【題目】2016世界特色魅力城市200強(qiáng)新鮮出爐,包括黃山市在內(nèi)的28個(gè)中國城市入選.美麗的黃山風(fēng)景和人文景觀迎來眾多賓客.現(xiàn)在很多人喜歡自助游,某調(diào)查機(jī)構(gòu)為了了解“自助游”是否與性別有關(guān),在黃山旅游節(jié)期間,隨機(jī)抽取了100人,得如下所示的列聯(lián)表:

贊成“自助游”

不贊成“自助游”

合計(jì)

男性

30

女性

10

合計(jì)

100


(1)若在100這人中,按性別分層抽取一個(gè)容量為20的樣本,女性應(yīng)抽11人,請將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料能否在犯錯(cuò)誤的概率不超過0.05前提下,認(rèn)為贊成“自助游”是與性別有關(guān)系?
(2)若以抽取樣本的頻率為概率,從旅游節(jié)游客中隨機(jī)抽取3人贈(zèng)送精美紀(jì)念品,記這3人中贊成“自助游”人數(shù)為X,求X的分布列和數(shù)學(xué)期望. 附:K2=

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

【答案】
(1)解:

贊成“自助游”

不贊成“自助游”

合計(jì)

男性

30

15

45

女性

45

10

55

合計(jì)

75

25

100

將2×2列聯(lián)表中的數(shù)據(jù)代入計(jì)算,得K2的觀測值: ,

∵3.030<3.841,∴在犯錯(cuò)誤的概率不超過0.05前提下,不能認(rèn)為贊成“自助游”與性別有關(guān)系.


(2)解:X的所有可能取值為:0,1,2,3,依題意 ,X的分布列為:

X

0

1

2

3

P(X)


【解析】(1)根所給數(shù)據(jù)得到列聯(lián)表,利用公式求得K2,與臨界值比較,即可得到結(jié)論.(2)X的所有可能取值為:0,1,2,3,求出相應(yīng)的概率,即可得到X的分布列、數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x+a)lnx在x=1處的切線方程為y=x﹣1.
(Ⅰ)求a的值及f(x)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C,設(shè)點(diǎn)A(x1 , y1),B(x2 , y2)是曲線C上不同的兩點(diǎn),如果在曲線C上存在點(diǎn)M(x0 , y0),使得①x0= ;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.試證明:函數(shù)f(x)不存在“中值相依切線”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an+1=10an+1.
(1)證明數(shù)列{an+ }是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=lg(an+ ),Tn為數(shù)列{ }的前n項(xiàng)和,求證:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
( I)求λ的值及數(shù)列{an}的通項(xiàng)公式;
( II)設(shè) ,且數(shù)列{bn}的前n項(xiàng)和為Sn , 求S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在正常數(shù)a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,則稱f(x)為“限增函數(shù)”.給出下列三個(gè)函數(shù):①f(x)=x2+x+1;② ;③f(x)=sin(x2),其中是“限增函數(shù)”的是(
A.①②③
B.②③
C.①③
D.③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
設(shè)函數(shù)f(x)=|x+ |+|x﹣2m|(m>0).
(1)求證:f(x)≥8恒成立;
(2)求使得不等式f(1)>10成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超過x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知 =(2λsinx,sinx+cosx), =( cosx,λ(sinx﹣cosx))(λ>0),函數(shù)f(x)= 的最大值為2.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,cosA= ,若f(A)﹣m>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別為棱BB1、BC的中點(diǎn),則異面直線AB1與EF所成角的大小為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

同步練習(xí)冊答案