【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最大值;
(2)若只有一個(gè)極值點(diǎn).
(i)求實(shí)數(shù)的取值范圍;
(ii)證明:.
【答案】(1) 最大值為-1. (2) (i)(ii)證明見(jiàn)解析
【解析】
(1)當(dāng)時(shí),,令,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,即可求得函數(shù)的最大值;
(2)由,得到,分和討論,求得函數(shù)的單調(diào)性與最值,結(jié)合函數(shù)的性質(zhì),即可得到答案.
(1)當(dāng)時(shí),,.
令,則,
∴在上單調(diào)遞增,在上單調(diào)遞減
∴,故的最大值為-1.
(2),.
①當(dāng)時(shí),在恒成立,則在單調(diào)遞增.
而,當(dāng)時(shí),,
則,且,∴使得.
∴當(dāng)時(shí),,則單調(diào)遞減;
當(dāng)時(shí),,則單調(diào)遞增,∴只有唯一極值點(diǎn).
②當(dāng)時(shí),
當(dāng)時(shí),,則單調(diào)遞增;
當(dāng)時(shí),,則單調(diào)遞減,∴.
(i)當(dāng)即時(shí),在恒成立,則在單調(diào)遞減,無(wú)極值點(diǎn),舍去.
(ii)當(dāng)即時(shí),.
又,且,∴使得.
由(1)知當(dāng)時(shí),,則
∴
則,且,∴使得.
∴當(dāng)時(shí),,則單調(diào)遞減;
當(dāng)時(shí),,則單調(diào)遞增;
當(dāng)時(shí),,則單調(diào)遞減.
∴有兩個(gè)極值點(diǎn),,舍去.
綜上,只有一個(gè)極值點(diǎn)時(shí),
∵,∴,
∴,.
令,∴,則在單調(diào)遞減
∴當(dāng)時(shí),,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車是碳排放量比較大的行業(yè)之一,歐盟規(guī)定,從2015年開(kāi)始,將對(duì)排放量超過(guò)130g/km的型新車進(jìn)行懲罰(視為排放量超標(biāo)),某檢測(cè)單位對(duì)甲、乙兩類型品牌抽取5輛進(jìn)行排放量檢測(cè),記錄如下(單位:g/km):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | x | y | 160 |
經(jīng)測(cè)算發(fā)現(xiàn),乙品牌車排放量的平均值為.
(Ⅰ)從被檢測(cè)的5輛甲類品牌中任取2輛,則至少有一輛排放量超標(biāo)的概率是多少?
(Ⅱ)若乙類品牌的車比甲類品牌的的排放量的穩(wěn)定性要好,求x的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一個(gè)三棱錐,是圓的直徑,是圓上的點(diǎn),垂直圓所在的平面,,分別是棱,的中點(diǎn).
(1)求證:平面;
(2)若二面角是,,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)滿足方程.
(1)求點(diǎn)M的軌跡C的方程;
(2)作曲線C關(guān)于軸對(duì)稱的曲線,記為,在曲線C上任取一點(diǎn),過(guò)點(diǎn)P作曲線C的切線l,若切線l與曲線交于A,B兩點(diǎn),過(guò)點(diǎn)A,B分別作曲線的切線,證明的交點(diǎn)必在曲線C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,其中實(shí)數(shù).
(1)求的最大值;
(2)若對(duì)于任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的偶函數(shù)滿足,且時(shí),,則函數(shù)在上的所有零點(diǎn)之和為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市一中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并據(jù)此判斷甲乙兩位同學(xué)的成績(jī)誰(shuí)更好?
(2)將同學(xué)乙的成績(jī)的頻率分布直方圖補(bǔ)充完整;
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),設(shè)選出的2個(gè)成績(jī)中含甲的成績(jī)的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來(lái)的后得到曲線;以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線和直線的直角坐標(biāo)方程;
(2)已知,設(shè)直線與曲線交于不同的、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對(duì)稱軸.過(guò)點(diǎn)A(-4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com