(2012•蕪湖三模)如圖,將邊長(zhǎng)為1,2,3的正八邊形疊放在一起,同一邊上相鄰珠子的距離為1,若以此方式再放置邊長(zhǎng)為4,5,6,…,10的正八邊形,則這10個(gè)正八邊形鑲嵌的珠子總數(shù)是
341
341
分析:各個(gè)正八邊形上的珠子分別有8,2×8,3×8,…10×8 個(gè),把它們相加,再減去多計(jì)算的珠子數(shù)3×9+2×8+2×7+2×6+…+2×1,即得所求.
解答:解:邊長(zhǎng)為1,2,3…10 的正八邊形疊放在一起,則各個(gè)正八邊形上的珠子分別有8,2×8,3×8,…10×8 個(gè),
其中,有3個(gè)珠子被重復(fù)計(jì)算了10次,有2個(gè)珠子被重復(fù)計(jì)算了9次,有2個(gè)珠子被重復(fù)計(jì)算了8次,有2個(gè)珠子被重復(fù)計(jì)算了7次,有2個(gè)珠子被重復(fù)計(jì)算了6次,…
有2個(gè)珠子被重復(fù)計(jì)算了2次,
故不同的珠子個(gè)數(shù)為( 8+2×8+3×8+…+10×8 )-[3×9+2×8+2×7+2×6+…+2×1]=440-(27+2×
8×9
2
)=341,
故答案為 341.
點(diǎn)評(píng):本題主要考查歸納推理,由幾個(gè)特殊的例子,分析其結(jié)構(gòu)特征,總結(jié)出一般規(guī)律,等差數(shù)列的求和公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖三模)若方程e2x+ex-a=0有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
(0,+∞)
(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖三模)若存在區(qū)間M=[a,b](a<b)使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個(gè)“穩(wěn)定區(qū)間”.給出下列4個(gè)函數(shù):
①f(x)=ex     ②f(x)=x3 ③f(x)=cos
πx2
     ④f(x)=lnx+1
其中存在穩(wěn)定區(qū)間的函數(shù)有
②③
②③
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖三模)在等比數(shù)列{an}中,已知a6-a4=24,a3a5=64,則{an}前8項(xiàng)的和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖三模)設(shè)實(shí)數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
u=
x+y
x
的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案