數(shù)學公式
(Ⅰ)判斷函數(shù)f(x)的單調性;
(Ⅱ)是否存在實數(shù)a、使得關于x的不等式lnx<a(x-1)在(1,+∞)上恒成立,若存在,求出a的取值范圍,若不存在,試說明理由;

證明:(1)∵
,


∴y=g(x)在[1,+∞)上為減函數(shù).
,
∴,
∴函數(shù)在(1,+∞)上為減函數(shù).
(2)lnx<a(x-1)在(1,+∞)上恒成立,?lnx-a(x-1)<0在(1,+∞)上恒成立,
設h(x)=lnx-a(x-1),則h(1)=0,
,
若a≤0顯然不滿足條件,
若a≥1,則x∈[1,+∞)時,恒成立,
∴h(x)=lnx-a(x-1)在[1,+∞)上為減函數(shù)
∴l(xiāng)nx-a(x-1)<h(1)=0在(0,+∞)上恒成立,
∴l(xiāng)nx<a(x-1)在(1,+∞)上恒成立,
若0<a<1,則時,,
時h'(x)≥0,
∴h(x)=lnx-a(x-1)在上為增函數(shù),
時,h(x)=lnx-a(x-1)>0,
不能使lnx<a(x-1)在(1,+∞)上恒成立,
∴a≥1
分析:(1)對f(x)求導后,構造新的函數(shù)g(x),利用導數(shù)求解函數(shù)單調的方法步驟進行求解.
(2)根據(jù)已知lnx<a(x-1)在(1,+∞)上恒成立等價于lnx-a(x-1)<0在(1,+∞)上恒成立,構造新的函數(shù)h(x)=lnx-a(x-1),本題所要求的a的取值范圍,只需滿足一個條件:使得h(x)在定義域內為減函數(shù)即可.
點評:本題考查利用導數(shù)研究函數(shù)的單調性問題,這一道題的新穎之處是構造新的函數(shù),這也是教學中的重點和難點,希望在平時多加練習,掌握要領.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=log
1
2
x+1
x-1

(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)證明函數(shù)f(x)在(1,+∞)上是增函數(shù);
(3)若x∈[3,+∞)時,不等式f(x)>(
1
2
)x+m
恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=log 
1
2
1-ax
x-1
(a為常數(shù))的圖象關于原點對稱
(1)求a的值;
(2)判斷函數(shù)f(x)在區(qū)間(1,+∞)的單調性并證明;
(3)若對于區(qū)間[3,4]上的每一個x的值,f(x)>(
1
2
x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•金山區(qū)一模)設a為實數(shù),函數(shù)f(x)=x|x-a|,其中x∈R.
(1)判斷函數(shù)f(x)的奇偶性,并加以證明;
(2)寫出函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

(1)試判斷函數(shù)f(x)的單調性,并給出證明:

(2)解關于x的不等式

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

(1)試判斷函數(shù)f(x)的單調性,并給出證明:

(2)解關于x的不等式

查看答案和解析>>

同步練習冊答案