四面體P-ABC中,M為棱AB的中點,則PB與CM所成角的余弦值為(    )
A.B.C.D.
C


中點,連接。因為分別是中點,所以,則所成角。因為是正四面體,設邊長為1,則。從而在可得,故選C
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三棱柱,底面為正三角形,平面,,中點.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐中,⊥底面,,

(1)求證:⊥平面;
(2)求二面角的平面角的余弦值;
(3)求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分) 如圖所示,在等腰梯形中,,,中點.將沿折起至,使得平面平面,分別為的中點.
(Ⅰ) 求證:;
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。
(1)證明:平面ADB⊥平面BDC;
(2 )設BD=1,求三棱錐D—ABC的表面積。
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四邊形為矩形,平面,平面于點,且點上.
(Ⅰ)求證:
(Ⅱ)求四棱錐的體積;
(Ⅲ)設點在線段上,且,
試在線段上確定一點,使得平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(9分)如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,EPC的中點.
(1)求證:PA∥平面BDE  
(2)求證:平面PAC平面BDE
(3)若,求三棱錐P-BDE的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分,其中第1小題6分,第2小題6分)
在直三棱柱中,,,且異面直線所成的角等于,設
(1)求的值;
(2)求直線到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖4,點P在長方體ABCDA1B1C1D1的面對角線BC1(線段BC1)上運動,給出下列四個命題:
①直線AD與直線B1P為異面直線;
②恒有A1P∥面ACD1;
③三棱錐AD1PC的體積為定值;
④當且僅當長方體各棱長都相等時,面PDB1⊥面ACD1
其中所有正確命題的序號是         
 

查看答案和解析>>

同步練習冊答案