精英家教網 > 高中數學 > 題目詳情

我市某高中的一個綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:

日   期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
晝夜溫差(°C)
10
11
13
12
8
6
就診人數(個)
22
25
29
26
16
12
 
該綜合實踐研究小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(1)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出關于的線性回歸方程
(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數據: ;
.

(1); (2) 小組所得線性回歸方程是理想的.

解析試題分析:(1)由所給數據,先分別計算,,,,,可進一步求得,那么可得線性回歸方程;(2)當時,, ;當時,, ,由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,可知求得的線性回歸方程是理想的.
解:(1),                2分
,               .4分
,          ..5分
.                 .6分
,             8分
                  .10分
于是得到y(tǒng)關于x的回歸直線方程.          .11分
(2)當時,, ;               .12分
同樣, 當時,, .               .13分   
所以,該小組所得線性回歸方程是理想的.             14分
考點:線性回歸分析.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:

 
喜愛打籃球
不喜愛打籃球
合計
男生
20
5
25
女生
10
15
25
合計
30
20
50
 
(1)用分層抽樣的方法在喜歡打藍球的學生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:

由散點圖可知,銷售量與價格之間有較好的線性相關關系,其線性回歸直線方程是;
(1)求的值;
(2)預計在今后的銷售中,銷量與單價仍然服從線性回歸直線方程中的關系,且該產品的成本是每件4元,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入一成本)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某單位有50名職工,現要從中抽取10名職工,將全體職工隨機按1~50編號,并按編號順序平均分成10組,按各組內抽取的編號依次增加5進行系統(tǒng)抽樣.

(1)若第5組抽出的號碼為22,寫出所有被抽出職工的號碼;
(2)分別統(tǒng)計這10名職工的體重(單位:公斤),獲得體重數據的莖葉圖如圖所示,求該樣本的方差;
(3)在(2)的條件下,從這10名職工中隨機抽取兩名體重不輕于73公斤(≥73公斤)的職工,求體重為76公斤的職工被抽取到的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
海關對同時從三個不同地區(qū)進口的某種商品進行抽樣檢測,從各地區(qū)進口此種商品的數量(單位:件)如右表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進行檢測

地區(qū)



數量
50
150
100
 
(1)求這6件樣品中來自各地區(qū)商品的數量;
(2)若在這6件樣品中隨機抽取2件送往甲機構進一步檢測,求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30 min抽取一包產品,稱其重量,分別記錄抽查數據如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種?
(2)將這兩組數據用莖葉圖表示;
(3)將兩組數據比較,說明哪個車間的產品較穩(wěn)定.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

從一批蘋果中,隨機抽取50個,其重量(單位:g)的頻數分布表如下:

分組(重量)
[80,85)
[85,90)
[90,95)
[95,100)
頻數(個)
5
10
20
15
 
(1)根據頻數分布表計算蘋果的重量在[90,95)的頻率;
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的蘋果中共抽取4個,其中重量在[80,85)的有幾個?
(3)在(2)中抽出的4個蘋果中,任取2個,求重量在[80,85)和[95,100)中各有一個的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

一個總體分為A,B兩層,用分層抽樣方法從總體中抽取一個容量為10的樣本。
已知B層中每個個體被抽到的概率都為,則總體中的個體數為       

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:

日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
晝夜溫差
x(℃)
10
11
13
12
8
6
就診人數
y(個)
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰兩個月的概率.
(2)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出y關于x的線性回歸方程=x+.
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式:==,=-).

查看答案和解析>>

同步練習冊答案