設(shè)函數(shù)y=f(x)對(duì)一切實(shí)數(shù)x都有f(3+x)=f(3-x)且方程恰有6個(gè)不同的實(shí)根,則這6個(gè)根之和為
18
18
分析:根據(jù)函數(shù)f(x)滿足f(3+x)=f(3-x),可得函數(shù)的圖象關(guān)于x=3對(duì)稱,從而得到方程f(x)=0的6個(gè)實(shí)數(shù)解中有3對(duì),每一對(duì)的和為6,由此可得結(jié)論.
解答:解:∵對(duì)于任意實(shí)數(shù)x,函數(shù)f(x)滿足f(3+x)=f(3-x),
∴函數(shù)的圖象關(guān)于x=3對(duì)稱,
∴函數(shù)的零點(diǎn)關(guān)于x=3對(duì)稱,
∴方程f(x)=0的根關(guān)于x=3對(duì)稱,
∴方程f(x)=0的6個(gè)實(shí)數(shù)解中有3對(duì),
∴成對(duì)的兩個(gè)根之和等于2×3=6,
∴6個(gè)實(shí)根之和是6×3=18.
故答案為:18.
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn)與方程的根的關(guān)系,解題的關(guān)鍵是看出函數(shù)的圖象關(guān)于直線x=1對(duì)稱,得到函數(shù)的零點(diǎn)是成對(duì)出現(xiàn)的,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)對(duì)任意正實(shí)數(shù)x,y都有f(x•y)=f(x)+f(y),已知f(8)=3,則f(
2
)
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)對(duì)任意的實(shí)數(shù)x,都有f(x)=
12
f(x-1)
,且當(dāng)x∈[0,1]時(shí),f(x)=27x2(1-x).
(1)若x∈[1,2]時(shí),求y=f(x)的解析式;
(2)對(duì)于函數(shù)y=f(x)(x∈[0,+∞)),試問:在它的圖象上是否存在點(diǎn)P,使得函數(shù)在點(diǎn)P處的切線與 x+y=0平行.若存在,那么這樣的點(diǎn)P有幾個(gè);若不存在,說明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],記 Sn=f(x1)+f(x2)+…+f(xn),求證:0≤Sn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x,都有f(x)=2f(x+1),當(dāng)x∈[0,1]時(shí),f(x)=
27
4
x2(1-x).
(Ⅰ)已知n∈N+,當(dāng)x∈[n,n+1]時(shí),求y=f(x)的解析式;
(Ⅱ)求證:對(duì)于任意的n∈N+,當(dāng)x∈[n,n+1]時(shí),都有|f(x)|≤
1
2n
;
(Ⅲ)對(duì)于函數(shù)y=f(x)(x∈[0,+∞),若在它的圖象上存在點(diǎn)P,使經(jīng)過點(diǎn)P的切線與直線x+y=1平行,那么這樣點(diǎn)有多少個(gè)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省郴州市汝城一中高三(上)周練數(shù)學(xué)試卷(4)(理科)(解析版) 題型:解答題

設(shè)函數(shù)y=f(x)對(duì)任意的實(shí)數(shù)x,都有,且當(dāng)x∈[0,1]時(shí),f(x)=27x2(1-x).
(1)若x∈[1,2]時(shí),求y=f(x)的解析式;
(2)對(duì)于函數(shù)y=f(x)(x∈[0,+∞)),試問:在它的圖象上是否存在點(diǎn)P,使得函數(shù)在點(diǎn)P處的切線與 x+y=0平行.若存在,那么這樣的點(diǎn)P有幾個(gè);若不存在,說明理由.
(3)已知 n∈N*,且 xn∈x[n,n+1],記 Sn=f(x1)+f(x2)+…+f(xn),求證:0≤Sn<4.

查看答案和解析>>

同步練習(xí)冊(cè)答案