(本小題滿分13分)

如圖7所示,在邊長(zhǎng)為12的正方形中,,且AB=3,BC=4,分別交BB1,CC1于點(diǎn)P、Q,將該正方形沿BB1、CC1折疊,使得與AA1重合,構(gòu)成如圖5所示的三棱柱ABC—A1B1C1,請(qǐng)?jiān)趫D5中解決下列問(wèn)題:

   (1)求證:

   (2)在底邊AC上有一點(diǎn)M,滿足AM:MC=3:4,求證:BM//平面APQ。

   (3)求直線BC與平面APQ所成角的正弦值。

(本小題滿分13分)

解:(1)證明:因?yàn)?img width=45 height=17 src="http://thumb.zyjl.cn/pic1/0688/217/260217.gif" >,,

       所以,從而,

       即.      2分

       又因?yàn)?sub>,而,

       所以平面,又平面

       所以;                   

   (2)過(guò),連接,

       因?yàn)?sub>

          

       ,

       四邊形為平行四邊形

       ,所以平面     

   (3)由圖1知,,分別以軸,

       則

                    

       設(shè)平面的法向量為,

       所以,

       令,則,

       所以直線與平面所成角的正弦值為  

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案