(14分)已知函數(shù)的圖象在點(diǎn)處的切線的方程為

(I)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;

(II)若函數(shù)在區(qū)間內(nèi)有零點(diǎn),求實(shí)數(shù)的最大值。

 

【答案】

 

(Ⅰ)點(diǎn)在函數(shù)圖像上

        

        ,由題意

        即

             

        當(dāng)時(shí),

         上為減函數(shù)

         

        若任意使恒成立

         即實(shí)數(shù)的取值范圍為  7分

(II)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051817281548438180/SYS201205181729190937774765_DA.files/image019.png">

     

      

       令得  

的最右側(cè)得一個(gè)零點(diǎn),故的最大值為1.                14分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三5月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的圖象在點(diǎn)處的切線斜率為

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)判斷方程根的個(gè)數(shù),證明你的結(jié)論;

(Ⅲ)探究:是否存在這樣的點(diǎn),使得曲線在該點(diǎn)附近的左、右的兩部分分別位于曲線在該點(diǎn)處切線的兩側(cè)?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷 (解析版) 題型:填空題

已知函數(shù)的圖象在點(diǎn)處的切線與直線平行,若數(shù)列的前項(xiàng)和為,則的值為           .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年海南省高三教學(xué)質(zhì)量監(jiān)測(cè)理科數(shù)學(xué)卷 題型:填空題

已知函數(shù)的圖象在點(diǎn)處的切線方程是=        。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山西省高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:選擇題

已知函數(shù)的圖象在點(diǎn)處的切線的斜率為3,數(shù)列

的前項(xiàng)和為,則的值為(   )

A、         B、         C、         D、

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省八縣(市高二下學(xué)期期末聯(lián)考(文科)數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分14分)已知函數(shù)的圖象在點(diǎn)處的切線的斜率為,且在處取得極小值。

(1)求的解析式;

(2)已知函數(shù)定義域?yàn)閷?shí)數(shù)集,若存在區(qū)間,使得的值域也是,稱(chēng)區(qū)間為函數(shù)的“保值區(qū)間”.

①當(dāng)時(shí),請(qǐng)寫(xiě)出函數(shù)的一個(gè)“保值區(qū)間”(不必證明);

②當(dāng)時(shí),問(wèn)是否存在“保值區(qū)間”?若存在,寫(xiě)出一個(gè)“保值區(qū)間”并給予證明;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案