【題目】已知函數(shù)f(x)=x2﹣ax+b(a>0,b>0)有兩個不同的零點m,n,且m,n和﹣2三個數(shù)適當(dāng)排序后,即可成為等差數(shù)列,也可成為等比數(shù)列,則a+b的值為(
A.7
B.8
C.9
D.10

【答案】C
【解析】解:由題意可得:m+n=a,mn=b,
∵a>0,b>0,
可得m>0,n>0,
又m,n,﹣2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,
可得 ①或 ②.
解①得:m=4,n=1;解②得:m=1,n=4.
∴a=5,b=4,
則a+b=9.
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識,掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視臺播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時,需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時,連續(xù)劇播放時長、廣告播放時長、收視人次如下表所示:

連續(xù)劇播放時長(分鐘)

廣告播放時長(分鐘)

收視人次(萬)

70

5

60

60

5

25

已知電視臺每周安排的甲、乙連續(xù)劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計劃播出的甲、乙兩套連續(xù)劇的次數(shù).(13分)
(I)用x,y列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(II)問電視臺每周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項公式為an= ,n∈N*
(1)求數(shù)列{ }的前n項和Sn
(2)設(shè)bn=anan+1 , 求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,以長方體的八個頂點中的兩點為起點和終點的向量中.

(1)單位向量共有多少個?

(2)試寫出模為的所有向量.

(3)試寫出與相等的所有向量.

(4)試寫出的相反向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表:

則下列結(jié)論中正確的是 ( )

A. 甲生產(chǎn)的產(chǎn)品質(zhì)量比乙生產(chǎn)的產(chǎn)品質(zhì)量好一些

B. 乙生產(chǎn)的產(chǎn)品質(zhì)量比甲生產(chǎn)的產(chǎn)品質(zhì)量好一些

C. 兩人生產(chǎn)的產(chǎn)品質(zhì)量一樣好

D. 無法判斷誰生產(chǎn)的產(chǎn)品質(zhì)量好一些

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的生產(chǎn)部門調(diào)研發(fā)現(xiàn),該公司第二、三季度的月用電量與月份線性相關(guān),且數(shù)據(jù)統(tǒng)計如下表:

但核對電費報表時發(fā)現(xiàn)一組數(shù)據(jù)統(tǒng)計有誤.

(1)請指出哪組數(shù)據(jù)有誤,并說明理由;

(2)在排除有誤數(shù)據(jù)后,求月用電量與月份之間的回歸方程,并預(yù)測統(tǒng)計有誤月份的用電量.(結(jié)果精確到0.1)

附注:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形ABCD中,∠A=45°,且AB=BD=1,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖所示:

(1)求證:AB⊥CD;
(2)若M為AD的中點,求二面角A﹣BM﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且a,b,c成等比數(shù)列,sinB= ,
(1)求 + 的值;
(2)若 =12,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知CD是等邊三角形ABC的AB邊上的高,E,F分別是AC和BC邊的中點,現(xiàn)將ABC沿CD翻折成直二面角A-DC-B.

(1)求直線BC與平面DEF所成角的余弦值;

(2)在線段BC上是否存在一點P,使APDE?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案