數(shù)學(xué)公式,又對(duì)于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

解:(1)∵


且x≠0

(2)令x1=x2=1
則f(x)=f(1)+f(1)
∴f(1)=0
令x1=x2=-1
則f(x)=2f(-1)=0
∴f(-1)=0…
(3)由x∈(0,1)時(shí),f(x)單調(diào)增,
∴f(x)<0,
當(dāng)x∈(-1,0)時(shí),令-1<x1<x2<0


∴f(x)在(-1,0)上為減函數(shù).
∵f(-1)=0…
∴f(x)在(-1,0)上f(x)<0
不等式的解集為[-1,0)∪(0,1]…
分析:(1)由可得,解不等式可求x的范圍,即可求D
(2)利用賦值:令x1=x2=1可求f(1);令x1=x2=-1可求f(-1)
(3)由x∈(0,1)時(shí),f(x)單調(diào)增,及f(1)=0可知f(x)<0,可證f(x)在(-1,0)上為減函數(shù)及f(-1)=0可得f(x)在(-1,0)上f(x)<0,從而可求不等式的解集
點(diǎn)評(píng):本題主要考查了對(duì)數(shù)函數(shù)定義域的求解,絕對(duì)值不等式的 解法,及利用賦值法求解抽象函數(shù)的函數(shù)值,利用函數(shù)單調(diào)性解不等式等函數(shù)知識(shí)的綜合應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)定義域?yàn)镈={x|log2(
4|x|
-1)≥1},當(dāng)x>0時(shí)f(x)單調(diào)遞增
,又對(duì)于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)定義域?yàn)镈={x|log2(
4|x|
-1)≥1}
,又對(duì)于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

f(x)定義域?yàn)镈={x|log2(
4
|x|
-1)≥1}
,又對(duì)于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

f(x)定義域?yàn)镈={x|log2(
4
|x|
-1)≥1},當(dāng)x>0時(shí)f(x)單調(diào)遞增
,又對(duì)于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案