過原點(diǎn)且傾斜角為的直線被圓學(xué)所截得的弦長為
A. | B.2 | C. | D.2 |
D
解析試題分析:由已知圓x2+y2-4y=0,我們可以將其轉(zhuǎn)化為標(biāo)準(zhǔn)方程的形式,求出圓心坐標(biāo)和半徑,又直線由過原點(diǎn)且傾斜角為60°,得到直線的方程,再結(jié)合半徑、半弦長、弦心距滿足勾股定理,即可求解.將圓x2+y2-4y=0的方程可以轉(zhuǎn)化為: x2+(y-2)2=4,即圓的圓心為A(0,2),半徑為R=2,∴A到直線ON的距離,即弦心距為1,∴ON=,∴弦長2,故選D.
考點(diǎn):本題主要考查了直線與圓相交的性質(zhì).考查了基本的計(jì)算的能力和數(shù)形結(jié)合的思想的應(yīng)用.
點(diǎn)評(píng):解決該試題的關(guān)鍵是要求圓到割線的距離,即弦心距,我們最常用的性質(zhì)是:半徑、半弦長(BE)、弦心距(OE)構(gòu)成直角三角形,滿足勾股定理,求出半徑和半弦長,代入即可求解
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),則兩圓心的距離|C1C2|=( )
A.4 | B.4 | C.8 | D.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
直線與圓沒有公共點(diǎn),則過點(diǎn)的直線與橢圓的交點(diǎn)的個(gè)數(shù)是( )
A.至多一個(gè) | B.2個(gè) | C.1個(gè) | D.0個(gè) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com