在△ABC中,A、B、C的對(duì)邊分別為a、b、c,
(1)acosC,bcosB,ccosA 成等差數(shù)列.求B的值;
(2)a、b、c成等比數(shù)列.求角B的取值范圍.
分析:(1)由條件利用正弦定理、誘導(dǎo)公式可得2sinBcosB=sinB,求得cosB=
1
2
,從而求得B 的值.
(2)由條件得b2=ac,代入cosB=
a2+c2-b2
2ac
 利用基本不等式求得cosB的最小值為
1
2
,由此求得角B的取值范圍.
解答:解:(1)△ABC中由acosC,bcosB,ccosA 成等差數(shù)列可得2bcosB=acosC+ccosA.
再由正弦定理可得 2sinBcosB=sinAcosC+sinAcosC=sin(A+C)=sinB,
∴cosB=
1
2
,∴B=
π
3

(2)∵a、b、c成等比數(shù)列,b2=ac,
∴cosB=
a2+c2-b2
2ac
2ac-b2
2ac
=
2ac-ac
2ac
=
1
2
,
當(dāng)且僅當(dāng)a=b=c時(shí),cosB=
1
2
,故 0<B≤
π
3
點(diǎn)評(píng):本題主要考查正弦定理、余弦定理的應(yīng)用,誘導(dǎo)公式以及基本不等式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長(zhǎng)為20cm,求此三角形的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過(guò)如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍.
(1)求f(x)的周期和對(duì)稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案