設(shè)點P是圓x2 +y2 =4上任意一點,由點P向x軸作垂線PP0,垂足為Po,且

    (Ⅰ)求點M的軌跡C的方程;

    (Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點A,B.

        (1)若直線OA,AB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍;

        (2)若以AB為直徑的圓過曲線C與x軸正半軸的交點Q,求證:直線過定點(Q點除外),并求出該定點的坐標(biāo).

解:(Ⅰ)設(shè)點,則由題意知.

,且

.

所以于是

,所以.

所以,點M的軌跡C的方程為.………………………………(3分)

(Ⅱ)設(shè), .

聯(lián)立

.       

所以,,即.    ①

    

(i)依題意,,即.

.

,即.

,,解得.

代入①,得.

所以,的取值范圍是

)曲線軸正半軸的交點為.

依題意,, 即.

于是.

,

.

化簡,得.

解得,,且均滿足.

當(dāng)時,直線的方程為,直線過定點(舍去);

當(dāng)時,直線的方程為,直線過定點.   

所以,直線過定點.  

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P是圓x2+y2=4上任意一點,由點P向x軸作垂線PP0,垂足為Po,且
MP0
=
3
2
pp0

(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍;
(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點Q,求證:直線l過定點(Q點除外),并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,設(shè)點P(x,y),定義[OP]=|x|+|y|,其中O為坐標(biāo)原點.對于下列結(jié)論:
①符合[OP]=1的點P的軌跡圍成的圖形的面積為2;
②設(shè)點P是直線:
5
x+2y-2=0
上任意一點,則[OP]min=
2
3
;
③設(shè)點P是直線:y=kx+1(k∈R)上任意一點,若使得[OP]最小的點P有無數(shù)個,則k的值是k=±1;
④設(shè)點P是圓x2+y2=1上任意一點,則[OP]max=
2

其中正確的結(jié)論序號為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省武漢市武昌區(qū)高三上學(xué)期期末調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分13分)

設(shè)點P是圓x2 +y2 =4上任意一點,由點P向x軸作垂線PP0,垂足為Po,且

(Ⅰ)求點M的軌跡C的方程;

(Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點A,B.

(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍;

(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點Q,求證:直線過定點(Q點除外),并求出該定點的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點P是圓x2+y2=4上任意一點,由點P向x軸作垂線PP0,垂足為Po,且
MP0
=
3
2
pp0

(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍;
(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點Q,求證:直線l過定點(Q點除外),并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)點P是圓x2+y2=4上任意一點,由點P向x軸作垂線PP,垂足為Po,且=
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍;
(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點Q,求證:直線l過定點(Q點除外),并求出該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案