(2013•肇慶二模)已知集合M={x|0<x<3},N={x|x2-5x+4≥0},則M∩N=(  )
分析:求出集合N中不等式的解集,確定出集合N,找出兩解集的公共部分即可確定出兩集合的交集.
解答:解:由x2-5x+4≥0,變形得:(x-1)(x-4)≥0,
解得:x≤1或x≥4,
∴N={x|x≤1或x≥4},
∵M(jìn)={x|0<x<3},
則M∩N={x|0<x≤1}.
故選A
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)(坐標(biāo)系與參數(shù)方程選做題)
若以直角坐標(biāo)系的x軸的非負(fù)半軸為極軸,曲線l1的極坐標(biāo)系方程為ρsin(θ-
π
4
)=
2
2
(ρ>0,0≤θ≤2π),直線l2的參數(shù)方程為
x=1-2t
y=2t+2
(t為參數(shù)),則l1與l2的交點(diǎn)A的直角坐標(biāo)是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)定義全集U的子集M的特征函數(shù)為fM(x)=
1,x∈M
0,x∈CUM
,這里?UM表示集合M在全集U中的補(bǔ)集,已M⊆U,N⊆U,給出以下結(jié)論:
①若M⊆N,則對(duì)于任意x∈U,都有fM(x)≤fN(x);
②對(duì)于任意x∈U都有fCUM(x)=1-fM(x);
③對(duì)于任意x∈U,都有fM∩N(x)=fM(x)•fN(x);
④對(duì)于任意x∈U,都有fM∪N(x)=fM(x)•fN(x).
則結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)不等式|2x+1|>|5-x|的解集是
(-∞,-6)∪(
4
3
,+∞)
(-∞,-6)∪(
4
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)在等差數(shù)列{an}中,a15=33,a25=66,則a35=
99
99

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)
π
2
0
(3x+sinx)dx=
3
8
π2+1
3
8
π2+1

查看答案和解析>>

同步練習(xí)冊(cè)答案