【題目】某學校為了分析在一次數(shù)學競賽中甲、乙兩個班的數(shù)學成績,分別從甲、乙兩個班中隨機抽取了10個學生的成績,成績的莖葉圖如下:

)根據(jù)莖葉圖,計算甲班被抽取學生成績的平均值及方差;

)若規(guī)定成績不低于90分的等級為優(yōu)秀,現(xiàn)從甲、乙兩個班級所抽取成績等級為優(yōu)秀的學生中,隨機抽取2人,求這兩個人恰好都來自甲班的概率.

【答案】,

【解析】

試題分析:根據(jù)平均數(shù)計算公式方差計算公式得甲、乙兩個班級等級為優(yōu)秀的學生分別3個4個,利用列舉法得抽取2人基本事件數(shù)為21,而兩個人恰好都來自甲班的事件數(shù)為3個,因此所求概率

試題解析:

.

)記甲班獲優(yōu)秀等次的三名學生分別為:,

乙班獲優(yōu)秀等次的四名學生分別為:.

記隨機抽取2人為事件,這兩人恰好都來自甲班為事件.

事件所包含的基本事件有:

共21個,

事件所包含的基本事件有:共3個,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的極坐標方程為ρ=6sinθ,以極點O為原點,極軸為x軸的非負半軸建立直角坐標系,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)直線l與曲線C交于B,D兩點,當|BD|取到最小值時,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數(shù)有(  )

A. 4個B. 3個C. 2個D. 1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,BC的對邊分別為a,bc,且滿足(2a-bcosC-ccosB=0

(Ⅰ)求角C的值;

(Ⅱ)若三邊a,bc滿足a+b=13,c=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】前不久商丘市因環(huán)境污染嚴重被環(huán)保部約談后,商丘市近期加大環(huán)境治理力度,如表提供了商丘某企業(yè)節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對應數(shù)據(jù).

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程y=bx+a;

2)已知該企業(yè)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標準煤?

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的最小正周期;

(2)若存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用系統(tǒng)抽樣法從200名職工中抽取容量為20的樣本,將200名職工從1至200編號,按編號順序平均分成20組(1~10號,11~20號,…,191…200號),若第15組中抽出的號碼為147,則第一組中按此抽簽方法確定的號碼是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,橢圓的離心率,是橢圓的右焦點,直線的斜率為,為坐標原點.

)求橢圓的方程.

)設過點的動直線相交于,兩點,當的面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國內某知名大學有男生14000人,女生10000人,該校體育學院想了解本校學生的運動狀況,根據(jù)性別采取分層抽樣的方法從全校學生中抽取120人,統(tǒng)計他們平均每天運動的時間,如下表:(平均每天運動的時間單位:小時,該校學生平均每天運動的時間范圍是).

男生平均每天運動時間分布情況:

女生平均每天運動時間分布情況:

(1)請根據(jù)樣本估算該校男生平均每天運動的時間(結果精確到0.1);

(2)若規(guī)定平均每天運動的時間不少于2小時的學生為“運動達人”,低于2小時的學生為“非運動達人”.

①請根據(jù)樣本估算該!斑\動達人”的數(shù)量;

②請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過0.05的前提下認為“是否為‘運動達人’與性別有關?”

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案