在直棱柱ABC-A1B1C1中,△ABC為等腰三角形,∠BAC=
π2
且AA1=2AB,D是CC1上的一點,設(shè)C1D=λC1C,若直線A1D與側(cè)面BCC1B1所成的角為30°,則λ=
 
分析:過A1作垂線A1E交B1C1與E,易證∠A1DE為直線A1D與側(cè)面BCC1B1所成的角,在三角形A1DE中求出A1D,再在三角形A1C1D中求出C1D的長,即可求出λ的值.
解答:精英家教網(wǎng)解:如圖,過A1作垂線A1E交B1C1與E,
易證∠A1DE=30°
設(shè)AB=AC=1,
則A1E=
2
2
,A1D=
2
,而A1C1=1,
則C1D=1=
1
2
C1C=λC1C
∴λ=
1
2

故答案為
1
2
點評:本題主要考查了直線與平面之間的位置關(guān)系,考查空間想象能力、運算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點E在棱CC1上,點F是棱C1D1的中點.
(I)若點E是棱CC1的中點,求證:EF∥平面A1BD;
(II)試確定點E的位置,使得A1-BD-E為直二面角,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,∠ACB=120°,AC=CB=1,D1是線段A1B1上一動點(可以與A1或B1重合).過D1和CC1的平面與AB交于D.
(1)若四邊形CDD1C1總是矩形,求證:三棱柱ABC-A1B1C1為直三棱柱;
(2)在(1)的條件下,求二面角B-AD1-C的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,則BC1與平面AB B1 A1所成角的正弦值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點E在棱CC1上,點E是棱C1C上一點.
(1)求證:無論E在任何位置,都有A1E⊥BD
(2)試確定點E的位置,使得A1-BD-E為直二面角,并說明理由.
(3)當E為CC1中點時,求四面體A1-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點E在棱CC1上,點E是棱C1C上一點.
(1)求證:無論E在任何位置,都有A1E⊥BD
(2)試確定點E的位置,使得A1-BD-E為直二面角,并說明理由.
(3)試確定點E的位置,使得四面體A1-BDE體積最大.并求出體積的最大值.

查看答案和解析>>

同步練習(xí)冊答案