【題目】已知雙曲線的右焦點(diǎn)為 是雙曲線C上的點(diǎn), ,連接并延長(zhǎng)交雙曲線C與點(diǎn)P,連接,若是以為頂點(diǎn)的等腰直角三角形,則雙曲線C的漸近線方程為(

A. B. C. D.

【答案】B

【解析】如圖,

設(shè)F1為雙曲線左焦點(diǎn),連接MF1,NF1,則:

由對(duì)稱性可知四邊形F1NF2M

為平行四邊形;

又△NF2P是以∠NF2P為頂角的等腰直角三角形,

可得∠MF2N=90°;

F1NF2M為矩形;

設(shè)|MF2|=x,由雙曲線的定義可得,

|MF1|=2a+x;

∴|PF2|=|NF2|=|MF1|=2a+x;

∴|PF1|=2a+|PF2|=4a+x;

RtMF1F2中有:

(2a+x)2+x2=4c2;

RtMF1P中有:(2a+x)2+(2a+2x)2=(4a+x)2;

由②解得,x=a,代回①得:9a2+a2=4c2;

c2=a2;b2=c2﹣a2=a2;

∴漸近線方程為:y=±x=±x.

故答案為:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ,求x+y≥0的概率;

(2)若x,yR,求x+y≥0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若函數(shù),討論的單調(diào)性;

(3)若函數(shù)的圖象與軸交于兩點(diǎn),且.設(shè),其中常數(shù)滿足條件,且.試判斷在點(diǎn)處的切線斜率的正負(fù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱的所有棱長(zhǎng)均為2, 中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 、、均為等邊三角形, .

(Ⅰ)求證: 平面;

(Ⅱ)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且經(jīng)過點(diǎn)M(2,1),直線平行OM,且與橢圓交于A、B兩個(gè)不同的點(diǎn)。

(Ⅰ)求橢圓方程;

()AOB為鈍角,求直線軸上的截距的取值范圍;

()求證直線MA、MB軸圍成的三角形總是等腰三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=
(Ⅰ)記F(x)=f(x)﹣g(x),判斷F(x)在區(qū)間(1,2)內(nèi)零點(diǎn)個(gè)數(shù)并說明理由;
(Ⅱ)記(Ⅰ)中的F(x)在(1,2)內(nèi)的零點(diǎn)為x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有兩個(gè)不等實(shí)根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并給出對(duì)應(yīng)的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a、b、c,其面積S=a2﹣(b﹣c)2 . 若a=2,則BC邊上的中線長(zhǎng)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的側(cè)面PAD是正三角形,底面ABCD為菱形,A點(diǎn)E為AD的中點(diǎn),若BE=PE.

(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案