如圖,在四棱錐中,底面為直角梯形,,垂直于底面,分別為的中點.
(1)求證:;
(2)求點到平面的距離.
(1)證明見解析;(2).
解析試題分析:(1)要證兩直線垂直,一般是證一條直線與過另一條直線的某個平面垂直,例如能否證明垂直于過的平面,下面就是要在平面內找兩條與垂直的直線,從題尋找垂直,是等腰的底邊上的中線,與是垂直的,另一條是直線垂直于平面,當然也垂直于直線,得證;(2)求點到平面距離,關鍵是過點作出平面的垂線,這一點在本題中還是委容易的,因為平面平面,故只要在平面內過作的垂線,這條垂線也我們要求作的平面的垂線,另外體積法在本題中也可采用.
試題解析:(1)因為N是PB的中點,PA=AB,
所以AN⊥PB,因為AD⊥面PAB,所以AD⊥PB,又因為AD∩AN=A
從而PB⊥平面ADMN,因為平面ADMN,
所以PB⊥DM. 7′
(2) 連接AC,過B作BH⊥AC,因為⊥底面,
所以平面PAB⊥底面,所以BH是點B到平面PAC的距離.
在直角三角形ABC中,BH= 14′
考點:(1)空間兩直線垂直;(2)點到平面的距離.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PAC;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐的底面為矩形,且,,,,
(Ⅰ)平面PAD與平面PAB是否垂直?并說明理由;
(Ⅱ)求直線PC與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上任一點.
(Ⅰ)求證:無論E點取在何處恒有;
(Ⅱ)設,當平面EDC平面SBC時,求的值;
(Ⅲ)在(Ⅱ)的條件下求二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥平面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。
(1)證明:平面PAB⊥平面PBC;
(2)若PA=,PC與側面APB所成角的余弦值為,PB與底面ABC成60°角,求二面角B―PC―A的大小。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點,G是AE,DF的交點.
(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com