已知雙曲線與橢圓x2+4y2=64共焦點,它的一條漸近線方程為x-=0,求雙曲線的方程.

答案:
解析:

  解法一:由于雙曲線的一條漸近線方程為x-=0,則另一條為x+=0.可設(shè)雙曲線方程為

  x2-3y2=λ(λ>0)即=1,

  由橢圓方程=1可知,

  c2=a2-b2=64-16=48,

  雙曲線與橢圓共焦點,則=48,

  ∴λ=36.

  故所求雙曲線方程為=1.

  解法二:雙曲線與橢圓共焦點,可設(shè)雙曲線方

  =1,

  由漸近線方程y=可得

  ,∴λ=28,

  故所求雙曲線方程為=1.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-
y23
=1

(1)求此雙曲線的漸近線方程;
(2)若過點(2,3)的橢圓與此雙曲線有相同的焦點,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C與橢圓x2+5y2=5有共同的焦點,且一條漸近線方程為y=
3
x

(1)求雙曲線C的方程;
(2)設(shè)雙曲線C的焦點分別為F1、F2,過焦點F1作實軸的垂線與雙曲線C相交于A、B兩點,求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C1:x2-y2=m(m>0)與橢圓C2
x2
a2
+
y2
b2
=1
有公共焦點F1F2,點N(
2
,1)
是它們的一個公共點.
(1)求C1,C2的方程;
(2)過點F2且互相垂直的直線l1,l2與圓M:x2+(y+1)2=4分別相交于點A,B和C,D,求|AB|+|CD|的最大值,并求此時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學熱點題型4:解析幾何(解析版) 題型:解答題

已知雙曲線C1:x2-y2=m(m>0)與橢圓有公共焦點F1F2,點是它們的一個公共點.
(1)求C1,C2的方程;
(2)過點F2且互相垂直的直線l1,l2與圓M:x2+(y+1)2=4分別相交于點A,B和C,D,求|AB|+|CD|的最大值,并求此時直線l1的方程.

查看答案和解析>>

同步練習冊答案