【題目】已知拋物線(xiàn),過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于、兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),點(diǎn).

(1)求的值;

(2)若,,的面積成等比數(shù)列,求直線(xiàn)的方程.

【答案】(1)(2)直線(xiàn)的方程為

【解析】

1)根據(jù)直線(xiàn)的傾斜角與角的關(guān)系,即可用直線(xiàn)的斜率以及兩角和與差的正切公式求出的值.

2)將條件“的面積成等比數(shù)列”等價(jià)轉(zhuǎn)化為“成等比數(shù)列”,再將直線(xiàn)的方程代入拋物線(xiàn)方程,利用韋達(dá)定理得到的值,結(jié)合條件即可建立關(guān)于直線(xiàn)的斜率的方程,從而求出斜率,得到直線(xiàn)的方程.

解:(1)由題意直線(xiàn),斜率均存在,且,.

.

.

(2)由(1)知點(diǎn)為拋物線(xiàn)的焦點(diǎn)

據(jù)題意,直線(xiàn)的斜率存在且不為0,故可設(shè)直線(xiàn)的方程為.

.

設(shè)、,則有,,

.

,的面積成等比數(shù)列,則,,成等比數(shù)列

,即:.

,則.

解得,,均滿(mǎn)足.

故直線(xiàn)的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為計(jì)算, 設(shè)計(jì)了如圖所示的程序框圖,則空白框中應(yīng)填入( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的離心率為,且經(jīng)過(guò)點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線(xiàn)與橢圓交于不同的兩點(diǎn),,試問(wèn)在軸上是否存在定點(diǎn)使得直線(xiàn)與直線(xiàn)恰關(guān)于軸對(duì)稱(chēng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)對(duì)某市工薪階層關(guān)于樓市限購(gòu)令的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)樓市限購(gòu)令贊成人數(shù)如下表.

月收入(單位百元)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問(wèn)是否有99%的把握認(rèn)為月收入以5500元為分界點(diǎn)對(duì)樓市限購(gòu)令的態(tài)度有差異;

月收入不低于55百元的人數(shù)

月收入低于55百元的人數(shù)

合計(jì)

贊成

a=______________

c=______________

______________

不贊成

b=______________

d=______________

______________

合計(jì)

______________

______________

______________

(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機(jī)抽取2人,恰有1位是贊成者的概率。

參考公式:,其中.

參考值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】n種不同的顏色為下列兩塊廣告牌著色,(如圖甲、乙),要求在A,B,C,D四個(gè)區(qū)域中相鄰(有公共邊界)的區(qū)域不用同一顏色.

(1)若n=6,則為甲圖著色時(shí)共有多少種不同的方法;

(2)若為乙圖著色時(shí)共有120種不同方法,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點(diǎn)對(duì)稱(chēng),且在區(qū)間上是單調(diào)函數(shù),則的值是( )

A. B. C. D. 無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為(t為參數(shù)),它與曲線(xiàn)C(y2)2x21交于A、B兩點(diǎn).

(1)|AB|的長(zhǎng);

(2)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線(xiàn)段AB中點(diǎn)M的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,,的中點(diǎn),的交點(diǎn),將沿翻折到圖的位置,得到四棱錐

1)求證:;

2)當(dāng)時(shí),求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

1)求不等式的解集

2)若,求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案