【題目】已知函數(shù)的圖象過點(diǎn),圖象與P點(diǎn)最近的一個最高點(diǎn)坐標(biāo)為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,求函數(shù)的值域;
(3)若方程在上有兩個不相等的實(shí)數(shù)根,,求的值.
【答案】(1);(2);(3)
【解析】
(1)由最值求解A,由已知特殊點(diǎn)可求周期,進(jìn)而可求ω,然后由點(diǎn)的坐標(biāo)代入可求φ,即可求解函數(shù)解析式,進(jìn)而求得單調(diào)增區(qū)間;
(2)由x的范圍,結(jié)合正弦函數(shù)的性質(zhì)可求函數(shù)的值域;
(3)結(jié)合已知及誘導(dǎo)公式及正弦函數(shù)的對稱性可求.
(1)由題意可得,A=3,,
所以T=π,ω=2,f(x)=3sin(2x+φ),
又,且,
故,解得,
令,
解得,
所以增區(qū)間為;
(2)由,可得,
∴,
∴即函數(shù)的值域;
(3)由可得,
所以,,
因?yàn)榉匠?/span>f(x)=1在上有兩個不相等的實(shí)數(shù)根,,
所以,即,
不妨設(shè),
且,
則
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)的最小正周期;
(2)常數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的取值范圍;
(3)若函數(shù)在的最大值為2,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班甲、乙兩名同學(xué)參加l00米達(dá)標(biāo)訓(xùn)練,在相同條件下兩人10次訓(xùn)練的成績(單位:秒)如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
甲 | 11.6 | 12.2 | 13.2 | 13.9 | 14.0 | 11.5 | 13.1 | 14.5 | 11.7 | 14.3 |
乙 | 12.3 | 13.3 | 14.3 | 11.7 | 12.0 | 12.8 | 13.2 | 13.8 | 14.1 | 12.5 |
(I)請作出樣本數(shù)據(jù)的莖葉圖;如果從甲、乙兩名同學(xué)中選一名參加學(xué)校的100米比賽,從成績的穩(wěn)定性方面考慮,選派誰參加比賽更好,并說明理由(不用計(jì)算,可通過統(tǒng)計(jì)圖直接回答結(jié)論).
(Ⅱ)從甲、乙兩人的10次訓(xùn)練成績中各隨機(jī)抽取一次,求抽取的成績中至少有一個比12.8秒差的概率.
(Ⅲ)經(jīng)過對甲、乙兩位同學(xué)的多次成績的統(tǒng)計(jì),甲、乙的成績都均勻分布在之間,現(xiàn)甲、乙比賽一次,求甲、乙成績之差的絕對值小于秒的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額 (百元)的頻率分布直方圖如圖所示:
(1)求網(wǎng)民消費(fèi)金額的中位數(shù);
(2)把下表中空格里的數(shù)填上,能否有的把握認(rèn)為網(wǎng)購消費(fèi)與性別有關(guān);
(3)將(2)中的頻率當(dāng)作概率,電子商務(wù)平臺從該市網(wǎng)民中隨機(jī)抽取10人贈送電子禮金,求這10人中女性的人數(shù)的數(shù)學(xué)期望.
男 | 女 | 合計(jì) | |
30 | |||
合計(jì) | 45 |
附表:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是偶函數(shù),
(1) 求的值;
(2)當(dāng)時,設(shè),若函數(shù)與的圖象有且只有一個公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)常數(shù),函數(shù).
(1)求函數(shù)的最值;
(2)設(shè).
(i)討論函數(shù)的單調(diào)性;
(ⅱ) 若函數(shù)有兩個不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)當(dāng)時,若對任意,都有成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校運(yùn)動會的立定跳遠(yuǎn)和30秒跳繩兩個單項(xiàng)比賽分成預(yù)賽和決賽兩個階段.表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則( )
A. 2號學(xué)生進(jìn)入30秒跳繩決賽 B. 5號學(xué)生進(jìn)入30秒跳繩決賽
C. 8號學(xué)生進(jìn)入30秒跳繩決賽 D. 9號學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)程為(為參數(shù)),設(shè)直線與的交點(diǎn)為,當(dāng)變化時點(diǎn)的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn)為曲線的動點(diǎn),求點(diǎn)到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com