【題目】如圖,四棱錐中,底面為梯形, , , ,平面 平面, .
(1)求證: ;
(2)是否存在點,到四棱錐各頂點的距離都相等?說明理由.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1),平面平面,所以平面,得;(2)點 是三個直角三角形、和的共同斜邊的中點,所以,所以存在點(即點)到四棱錐各頂點的距離都相等.
試題解析:
(1)證明:設的中點為,連結,在梯形中,
因為, ,
所以為等邊三角形,
又
所以四邊形為菱形,
因為, ,所以
所以,
又平面平面, 是交線, 平面
所以平面
又因為 平面,所以
(2)解:因為, , ,所以平面
所以
所以 為直角三角形,
連結 ,由(1)知,
所以
所以 為直角三角形, .
所以點 是三個直角三角形、和的共同斜邊的中點,
所以,
所以存在點(即點)到四棱錐各頂點的距離都相等.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若關于的不等式對一切恒成立,求實數(shù)的取值范圍;
(3)求證:對,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓,稱圓為橢圓的“伴隨圓”.已知點是橢圓上的點
(1)若過點的直線與橢圓有且只有一個公共點,求被橢圓的伴隨圓所截得的弦長:
(2)是橢圓上的兩點,設是直線的斜率,且滿足,試問:直線是否過定點,如果過定點,求出定點坐標,如果不過定點,試說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別是、,離心率,過點的直線交橢圓于、兩點, 的周長為16.
(1)求橢圓的方程;
(2)已知為原點,圓: ()與橢圓交于、兩點,點為橢圓上一動點,若直線、與軸分別交于、兩點,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,并使得它與直角坐標系有相同的長度單位,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設曲線與直線交于、兩點,且點的坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當前,網(wǎng)購已成為現(xiàn)代大學生的時尚。某大學學生宿舍4人參加網(wǎng)購,約定:每個人通過擲一枚質地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商城購物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購物.
(1)求這4個人中恰有1人去淘寶網(wǎng)購物的概率;
(2)用分別表示這4個人中去淘寶網(wǎng)和京東商城購物的人數(shù),記,求隨機變量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如下表:
(1)根據(jù)表中數(shù)據(jù),建立關于的線性回歸方程;
(2)若近幾年該農(nóng)產(chǎn)品每千克的價格 (單位:元)與年產(chǎn)量滿足的函數(shù)關系式為,且每年該農(nóng)產(chǎn)品都能售完.
①根據(jù)(1)中所建立的回歸方程預測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;
②當為何值時,銷售額最大?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某大型水上樂園內(nèi)有一塊矩形場地米, 米,以為直徑的半圓和半圓(半圓在矩形內(nèi)部)為兩個半圓形水上主題樂園, 都建有圍墻,游客只能從線段處進出該主題樂園.為了進一步提高經(jīng)濟效益,水上樂園管理部門決定沿著修建不銹鋼護欄,沿著線段修建該主題樂園大門并設置檢票口,其中分別為上的動點, ,且線段與線段在圓心和連線的同側.已知弧線部分的修建費用為元/米,直線部門的平均修建費用為元/米.
(1)若米,則檢票等候區(qū)域(其中陰影部分)面積為多少平方米?
(2)試確定點的位置,使得修建費用最低.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com