已知橢圓C:的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在橢圓C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱,求直線L的方程.
(1)橢圓C的方程為=1. (2)所求的直線方程為8x-9y+25=0.
【解析】
試題分析:(1) ∵點(diǎn)P在橢圓C上,∴,a=3.
在Rt△PF1F2中,故橢圓的半焦距c=,
從而b2=a2-c2="4," ∴橢圓C的方程為=1.
(2)設(shè)A,B的坐標(biāo)分別為(x1, y1)、(x2, y2). ∵圓的方程為(x+2)2+(y-1)2=5, ∴圓心M的坐標(biāo)為(-2,1). 從而可設(shè)直線l的方程為 y="k(x+2)+1," 代入橢圓C的方程得
(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0. (*)
又∵A、B關(guān)于點(diǎn)M對(duì)稱. ∴ 解得,
∴直線l的方程為 即8x-9y+25=0. 此時(shí)方程(*)的 ,故所求的直線方程為8x-9y+25=0.
解法二:(1)同解法一.
(2)已知圓的方程為(x+2)2+(y-1)2=5, ∴圓心M的坐標(biāo)為(-2,1).
設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2). 由題意x1x2且
① ②
由①-②得 ③
又∵A、B關(guān)于點(diǎn)M對(duì)稱,∴x1+ x2=-4, y1+ y2=2, 代入③得=,即直線l的斜率為,
∴直線l的方程為y-1=(x+2),即8x-9y+25="0." 此時(shí)方程(*)的 ,故所求的直線方程為8x-9y+25=0.
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與圓、橢圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,本題求橢圓的標(biāo)準(zhǔn)方程時(shí),應(yīng)用了橢圓的定義。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本解法給出了兩種思路,其中思路1主要是利用韋達(dá)定理,結(jié)合對(duì)稱性求得直線方程;思路2則利用了“點(diǎn)差法”求斜率,進(jìn)一步結(jié)合對(duì)稱性求得直線方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省湛江二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年內(nèi)蒙古赤峰市高三統(tǒng)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com