【題目】設函數(shù).

1)求的單調(diào)區(qū)間;

2)當時,若對,都有)成立,求的最大值.

【答案】1)答案不唯一,具體見解析(20

【解析】

1,.對分類討論,可得其單調(diào)區(qū)間.

2)當時,對,都有恒成立, ,令,只需,利用導數(shù)研究其單調(diào)性即可得出.

解:(1.

時,恒成立,是單減函數(shù).

時,令,解之得.

從而,當變化時,,的變化情況如下表:

-

0

+

單調(diào)遞減

單調(diào)遞增

由上表中可知,是單減函數(shù),在是單增函數(shù).

綜上,當時,的單減區(qū)間為;

時,的單減區(qū)間為,單增區(qū)間為.

2)當,為整數(shù),且當時,恒成立

.

,只需

,

由(1)得單調(diào)遞增,且,

所以存在唯一的,使得,

,即單調(diào)遞減,

,即單調(diào)遞增,

所以時,取得極小值,也是最小值,當時,

為增函數(shù),,

.,

,即所求的最大值為0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在一次籃球投籃測試中,記分規(guī)則如下(滿分為分):①每人可投籃次,每投中一次記分;②若連續(xù)兩次投中加分,連續(xù)三次投中加分,連續(xù)四次投中加分,以此類推,…,七次都投中加.假設某同學每次投中的概率為,各次投籃相互獨立,則:(1)該同學在測試中得分的概率為______;(2)該同學在測試中得分的概率為______..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知球是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)的外接球,,點在線段上,且,過點作球的截面,則所得截面圓面積的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如圖1直角三角形ACB中,,,點的中點,,將沿折起,使面,如圖2.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB平面BEC,BEEC,AB=BE=EC=2,G,F(xiàn)分別是線段BE,DC的中點.

)求證:平面 ;

)求平面AEF與平面BEC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上.

(1)求橢圓的方程;

(2)若不過原點的直線與橢圓相交于兩點,與直線相交于點,且是線段的中點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從8名教師中選派4名同時去4個邊遠地區(qū)支教(每地1名教師),其中甲和乙不能都去,甲和丙只能都去或都不去,則不同的選派方案有( )

A.900種B.600種C.300種D.150種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為

(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題正確的是(

①線性相關系數(shù)越大,兩個變量的線性相關性越強;反之,線性相關性越弱;

②殘差平方和越小的模型,擬合的效果越好;

③用相關指數(shù)來刻畫回歸效果,越小,說明模型的擬合的效果越好;

④隨機誤差是衡量預報精確度的一個量,它滿足.

A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習冊答案