【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是8,則判斷框內(nèi)m的取值范圍是(
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)

【答案】B
【解析】解:∵該程序的功能是計算 2+4+6+…值,

由循環(huán)變量的初值為1,步長為1,

最后一次進入循環(huán)的終值為8,

第1次循環(huán):S=0+2=2 k=1+1=2

第2次循環(huán):S=2+4=6 k=2+1=3

第3次循環(huán):S=6+6=12 k=3+1=4

第4次循環(huán):S=12+8=20 k=4+1=5

第6次循環(huán):S=30+12=42 k=6+1=7

第7次循環(huán):S=42+14=56 k=7+1=8

退出循環(huán).此時S=56,不滿足條件,跳出循環(huán),輸出k=8

則判斷框內(nèi)m的取值范圍是m∈(42,56].

故選B.

由已知中該程序的功能是計算 2+4+6+…值,由循環(huán)變量的初值為1,步長為1,最后一次進入循環(huán)的終值為8,即S=56,由此易給出判斷框內(nèi)m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 )的焦距與橢圓 的短軸長相等,且 的長軸長相等,這兩個橢圓在第一象限的交點為 ,直線 經(jīng)過 軸正半軸上的頂點 且與直線 為坐標原點)垂直, 的另一個交點為 , 交于 , 兩點.

(1)求 的標準方程;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為半圓 的直徑,點 是半圓弧上的兩點, .曲線 經(jīng)過點 ,且曲線 上任意點 滿足: 為定值.

(Ⅰ)求曲線 的方程;
(Ⅱ)設(shè)過點 的直線 與曲線 交于不同的兩點 ,求 面積最大時的直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱 中, 分別是 的中點.

(Ⅰ)求證: 平面 ;
(Ⅱ)若 上一點 滿足 ,求 所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,如果輸入的a=﹣1,則輸出的S=( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖(N∈N*),那么輸出的p是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)判斷函數(shù) 的奇偶性.
(2)求 的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,其中 , ,存在 使得 成立,則實數(shù) 的值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了準確地把握市場,做好產(chǎn)品生產(chǎn)計劃,對過去四年的數(shù)據(jù)進行整理得到了第年與年銷量(單位:萬件)之間的關(guān)系如下表:

(1)在圖中畫出表中數(shù)據(jù)的散點圖;

(2)根據(jù)散點圖選擇合適的回歸模型擬合的關(guān)系(不必說明理由);

(3)建立關(guān)于的回歸方程,預(yù)測第5年的銷售量.

附注:參考公式:回歸直線的斜率和截距的最小二乘法估計公式分別為:

, .

查看答案和解析>>

同步練習(xí)冊答案