在橢圓上找一點,使這一點到直線的距離的最小值

試題分析:解:設(shè)橢圓的參數(shù)方程為,    2分
      4分
    8分
當(dāng)時,,此時所求點為         10分
點評:關(guān)鍵是利用橢圓的參數(shù)方程來設(shè)出點,借助于點到直線的距離公式得到最值,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點O和點F分別為雙曲線 的中心和左焦點,點P為雙曲線右支上的任意一點,則的最小值為(  )
A.-6B.-2C.0D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是拋物線的焦點,上的兩個點,線段AB的中點為,則的面積等于              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若橢圓的左、右焦點分別為F1,F(xiàn)2,橢圓的離心率為:2.(1)過點C(-1,0)且以向量為方向向量的直線交橢圓于不同兩點A、B,若,則當(dāng)△OAB的面積最大時,求橢圓的方程。
(2)設(shè)M,N為橢圓上的兩個動點,,過原點O作直線MN的垂線OD,垂足為D,求點D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)A、B為雙曲線同一條漸近線上的兩個不同的點,已知向量=(1,0),,則雙曲線的離心率e等于
A.2    B.    C.2或  D. 2或

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的兩個焦點,,過且與坐標(biāo)軸不平行的直線與橢圓交于兩點,如果的周長等于8。
(1)求橢圓的方程;
(2)若過點的直線與橢圓交于不同兩點,試問在軸上是否存在定點,使恒為定值?若存在,求出點的坐標(biāo)及定值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩定點E(-2,0),F(2,0),動點P滿足,由點P向x軸作垂線段PQ,垂足為Q,點M滿足,點M的軌跡為C.
(1)求曲線C的方程
(2)過點D(0,-2)作直線與曲線C交于A、B兩點,點N滿足
(O為原點),求四邊形OANB面積的最大值,并求此時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知拋物線和橢圓都經(jīng)過點,它們在軸上有共同焦點,橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的焦點為,準(zhǔn)線與軸的交點為,點上且,則△的面積為(   )
A.4 B.8C.16D.32

查看答案和解析>>

同步練習(xí)冊答案