(本小題滿分13分)已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)利用導(dǎo)數(shù),列表分析即可確定的單調(diào)增區(qū)間;(Ⅱ),所以分成、三種情況,利用導(dǎo)數(shù),列表分析每一種情況下的最小值即可.
試題解析:(Ⅰ)當(dāng)時(shí),,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/19/a/1ixfd2.png" style="vertical-align:middle;" />.

,得.                              3分
列表如下













所以函數(shù)的單調(diào)增區(qū)間為.                      6分
(Ⅱ)
,得.                            ^  7分
當(dāng)時(shí),不論還是,在區(qū)間上,均為增函數(shù)。
所以;                                 8分
當(dāng)時(shí),



練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在上的函數(shù)同時(shí)滿足以下條件:①函數(shù)上是減函數(shù),在上是增函數(shù);②是偶函數(shù);③函數(shù)處的切線與直線垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè),若存在使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=2時(shí),求證:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求證:+…+<lnn<1++ +(n∈N*,且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,,處的切線方程為
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求的解析式;
(III)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=ex+ax-1(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)a=1時(shí),求過點(diǎn)(1,f(1))處的切線與坐標(biāo)軸圍成的三角形的面積;
(II)若f(x)x2在(0,1 )上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為正實(shí)數(shù),的一個(gè)極值點(diǎn).
(Ⅰ)求的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)為常數(shù))
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且處的切線方程為.
(1)求的解析式;
(2)證明:當(dāng)時(shí),恒有;
(3)證明:若,,且,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意,不等式恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案