【題目】已知函數(shù)f(x)的定義域?yàn)閇﹣1,5],部分對(duì)應(yīng)值如表,

x

﹣1

0

4

f(x)

1

2

2

f(x)的導(dǎo)函數(shù)y=f′(x)的圖象(該圖象關(guān)于(2,0)中心對(duì)稱) 如圖所示.
下列關(guān)于f(x)的命題:
①函數(shù)f(x)的極大值點(diǎn)為 0與4;
②函數(shù)f(x)在[0,2]上是減函數(shù);
③函數(shù)y=f(x)﹣a零點(diǎn)的個(gè)數(shù)可能為0、1、2、3、4個(gè);
④如果當(dāng)時(shí)x∈[﹣1,t],f(x)的最大值是2,那么t的最大值為5;.
⑤函數(shù)f(x)的圖象在a=1是上凸的
其中一定正確命題的序號(hào)是

【答案】①②④
【解析】①②④解:對(duì)于①,∵由導(dǎo)函數(shù)的圖象知,函數(shù)f(x)的最大值點(diǎn)為0與4,故①正確;
對(duì)于②,由已知中y=f′(x)的圖象可得在[0,2]上f′(x)<0,即f(x)在[0,2]是減函數(shù),即②正確;
對(duì)于③,由導(dǎo)函數(shù)y=f′(x)的圖象可知,函數(shù)在[﹣1,0],[2,4]上為增函數(shù),
則[0,2],[4,5]上為減函數(shù),且函數(shù)在x=0和x=4取得極大值f(0)=2,f(4)=2,
在x=2取得極小值f(2)=0,則函數(shù)f(x)的大致圖象如圖:則函數(shù)y=f(x)與直線y=a的圖象有四個(gè)交點(diǎn)可能為0、1、2、4個(gè),即③錯(cuò)誤
對(duì)于④,由已知中y=f′(x)的圖象,及表中數(shù)據(jù)可得當(dāng)x=0或x=4時(shí),函數(shù)取最大值2,若x∈[﹣1,t]時(shí),f(x)的最大值是2,那么0≤t≤5,故t的最大值為5,即④正確;
對(duì)于⑤,根據(jù)函數(shù)f(x)的大致圖象,判斷⑤錯(cuò)誤;
所以答案是:①②④.

【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某購物中心為了了解顧客使用新推出的某購物卡的顧客的年齡分布情況,隨機(jī)調(diào)查了位到購物中心購物的顧客年齡,并整理后畫出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.

(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;

(2) 擬利用分層抽樣從年齡在的顧客中選取人召開一個(gè)座談會(huì),現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=x0與g(x)=1
B.f(x)=x與g(x)=
C.f(x)=x2﹣1與g(x)=x2+1
D.f(x)=|x|與g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),其中為函數(shù)的導(dǎo)函數(shù).判斷在定義域內(nèi)是否為單調(diào)函數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則f(4)=________;f(n)=________(
A.37 3n2﹣3n+1
B.38 3n2﹣3n+2
C.36 3n2﹣3n
D.35 3n2﹣3n﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個(gè)集合U,A,B及元素間的關(guān)系如圖所示,則(CUA)∩B=(
A.{5,6}
B.{3,5,6}
C.{3}
D.{0,4,5,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)f(x)=sin (2x﹣ )(x∈R),給出下列三個(gè)結(jié)論: ①對(duì)于任意的x∈R,都有f(x)=cos (2x﹣ );
②對(duì)于任意的x∈in R,都有f(x+ )=f(x﹣ );
③對(duì)于任意的x∈R,都有f( ﹣x)=f( +x).
其中,全部正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x+y)=f(x)+f(y)且f(1)=2,則f(1)+f(2)+…+f(n)不能等于(
A.f(1)+2f(1)+…+nf(1)
B.f(
C.n(n+1)
D.n(n+1)f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx+ ,m∈R,若對(duì)任意b>a>0, <1恒成立,則m的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案